12 resultados para real wage rates
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The flexible-price two-country monetary model is extended to include a consumption externality with habit persistence. Two methodologies are employed to explore this model's ability to generate volatile and persistent exchange rates. In the first, actual data is used for the exogenous driving processes. In the second, the model is simulated using estimated forcing processes. The theory, in both cases, is capable of explaining the high volatility and persistence of real and nominal exchange rates as well as the high correlation between real and nominal rates. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This is a definitive new account of Britain's economic evolution from a backwater of Europe in 1270 to the hub of the global economy in 1870. For the first time Britain's national accounts are reconstructed right back into the thirteenth century to show what really happened quantitatively during the centuries leading up to the Industrial Revolution. Contrary to traditional views of the earlier period as one of Malthusian stagnation, they reveal how the transition to modern economic growth built on the earlier foundations of a persistent upward trend in GDP per capita which doubled between 1270 and 1700. Featuring comprehensive estimates of population, land use, agricultural production, industrial and service-sector production and GDP per capita, as well as analysis of their implications, this is an essential reference work for those interest in British economic history and the origins of modern economic growth more generally.
Resumo:
Pessimistic Malthusian verdicts on the capacity of pre-industrial European economies to sustain a degree of real economic growth under conditions of population growth are challenged using current reconstructions of urbanisation ratios, the real wage rates of building and agricultural labourers, and GDP per capita estimated by a range of methods. Economic growth is shown to have outpaced population growth and raised GDP per capita to in excess of $1,500 (1990 $ international at PPP) in Italy during its twelfth- and thirteenth-century commercial revolution, Holland during its fifteenth- and sixteenth-century golden age, and England during the seventeenth- and eighteenth-century runup to its industrial revolution. During each of these Smithian growth episodes expanding trade and commerce sustained significant output and employment growth in the manufacturing and service sectors. These positive developments were not necessarily reflected by trends in real wage rates for the latter were powerfully influenced by associated changes in relative factor prices and the per capita supply of labour as workers varied the length of the working year in order to consume either more leisure or more goods. The scale of the divergence between trends in real wage rates and GDP per capita nevertheless varied a great deal between countries for reasons which have yet to be adequately explained.
Resumo:
Recent empirical research questions the validity of using Malthusian theory in preindustrial England. Using real wage and vital rate data for the years 1650–1881, I provide empirical estimates for a different region: Northern Italy. The empirical methodology is theoretically underpinned by a simple Malthusian model, in which population, real wages, and vital rates are determined endogenously. My findings strongly support the existence of a Malthusian economy wherein population growth decreased living standards, which in turn influenced vital rates. However, these results also demonstrate how the system is best characterized as one of weak homeostasis. Furthermore, there is no evidence of Boserupian effects given that increases in population failed to spur any sustained technological progress.
Resumo:
Mortality models used for forecasting are predominantly based on the statistical properties of time series and do not generally incorporate an understanding of the forces driving secular trends. This paper addresses three research questions: Can the factors found in stochastic mortality-forecasting models be associated with real-world trends in health-related variables? Does inclusion of health-related factors in models improve forecasts? Do resulting models give better forecasts than existing stochastic mortality models? We consider whether the space spanned by the latent factor structure in mortality data can be adequately described by developments in gross domestic product, health expenditure and lifestyle-related risk factors using statistical techniques developed in macroeconomics and finance. These covariates are then shown to improve forecasts when incorporated into a Bayesian hierarchical model. Results are comparable or better than benchmark stochastic mortality models.
Resumo:
Pseudomonas aeruginosa is an important cause of pulmonary infection in cystic fibrosis (CF). Its correct identification ensures effective patient management and infection control strategies. However, little is known about how often CF sputum isolates are falsely identified as P. aeruginosa. We used P. aeruginosa-specific duplex real-time PCR assays to determine if 2,267 P. aeruginosa sputum isolates from 561 CF patients were correctly identified by 17 Australian clinical microbiology laboratories. Misidentified isolates underwent further phenotypic tests, amplified rRNA gene restriction analysis, and partial 16S rRNA gene sequence analysis. Participating laboratories were surveyed on how they identified P. aeruginosa from CF sputum. Overall, 2,214 (97.7%) isolates from 531 (94.7%) CF patients were correctly identified as P. aeruginosa. Further testing with the API 20NE kit correctly identified only 34 (59%) of the misidentified isolates. Twelve (40%) patients had previously grown the misidentified species in their sputum. Achromobacter xylosoxidans (n = 21), Stenotrophomonas maltophilia (n = 15), and Inquilinus limosus (n = 4) were the species most commonly misidentified as P. aeruginosa. Overall, there were very low rates of P. aeruginosa misidentification among isolates from a broad cross section of Australian CF patients. Additional improvements are possible by undertaking a culture history review, noting colonial morphology, and performing stringent oxidase, DNase, and colistin susceptibility testing for all presumptive P. aeruginosa isolates. Isolates exhibiting atypical phenotypic features should be evaluated further by additional phenotypic or genotypic identification techniques.
Resumo:
The char oxidation of a torrefied biomass and its parent material was carried out in an isothermal plug flow reactor (IPFR), which is able to rapidly heat the biomass particles to a maximum temperature of 1400 °C at a heating rate of 104 °C/s, similar to the real conditions found in power plant furnaces. During each char oxidation test, the residues of biomass particles were collected and analyzed to determine the weight loss based on the ash tracer method. According to the experimental results, it can be concluded that chars produced from a torrefied biomass are less reactive than the ones produced, under the same conditions, from its raw material. The apparent kinetics of the torrefied biomass and its parent material are determined by minimizing the difference between the modeled and the experimental results. The predicted weight loss during char oxidation, using the determined kinetics, agrees well with experimental results
Resumo:
The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers in a range of conditions. One rate-limiting factor is the time taken to perform quantitative real time PCR amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress® thermal cycler (BJS Biotechnologies, Perivale, UK), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10 °C/s, and a conventional peltier-controlled LightCycler 480 system (Roche, Basel, Switzerland) ramping at 4.8 °C/s. The threshold cycle (Ct) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, p=2.4x10-25) for the xxpress (20.01±0.47SD) than the LightCycler (19.87±0.04SD). RNA was extracted from human plasma, reverse transcribed and a panel of miRNAs amplified and detected using SYBR green (Kapa Biosystems, Wilmington, Ma, USA). The sensitivity of both systems was broadly comparable and both detected a panel of miRNAs reliably and indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of care diagnostics based upon circulating miRNAs a step closer to reality.
Resumo:
Quantifying the similarity between two trajectories is a fundamental operation in analysis of spatio-temporal databases. While a number of distance functions exist, the recent shift in the dynamics of the trajectory generation procedure violates one of their core assumptions; a consistent and uniform sampling rate. In this paper, we formulate a robust distance function called Edit Distance with Projections (EDwP) to match trajectories under inconsistent and variable sampling rates through dynamic interpolation. This is achieved by deploying the idea of projections that goes beyond matching only the sampled points while aligning trajectories. To enable efficient trajectory retrievals using EDwP, we design an index structure called TrajTree. TrajTree derives its pruning power by employing the unique combination of bounding boxes with Lipschitz embedding. Extensive experiments on real trajectory databases demonstrate EDwP to be up to 5 times more accurate than the state-of-the-art distance functions. Additionally, TrajTree increases the efficiency of trajectory retrievals by up to an order of magnitude over existing techniques.
Resumo:
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.
Resumo:
The hypervariable regions of immunoglobulin heavy-chain (IgH) rearrangements provide a specific tumor marker in multiple myeloma (MM). Recently, real-time PCR assays have been developed in order to quantify the number of tumor cells after treatment. However, these strategies are hampered by the presence of somatic hypermutation (SH) in VDJH rearrangements from multiple myeloma (MM) patients, which causes mismatches between primers and/or probes and the target, leading to a nonaccurate quantification of tumor cells. Our group has recently described a 60% incidence of incomplete DJH rearrangements in MM patients, with no or very low rates of SH. In this study, we compare the efficiency of a real-time PCR approach for the analysis of both complete and incomplete IgH rearrangements in eight MM patients using only three JH consensus probes. We were able to design an allele-specific oligonucleotide for both the complete and incomplete rearrangement in all patients. DJH rearrangements fulfilled the criteria of effectiveness for real-time PCR in all samples (ie no unspecific amplification, detection of less than 10 tumor cells within 10(5) polyclonal background and correlation coefficients of standard curves higher than 0.98). By contrast, only three out of eight VDJH rearrangements fulfilled these criteria. Further analyses showed that the remaining five VDJH rearrangements carried three or more somatic mutations in the probe and primer sites, leading to a dramatic decrease in the melting temperature. These results support the use of incomplete DJH rearrangements instead of complete somatically mutated VDJH rearrangements for investigation of minimal residual disease in multiple myeloma.