11 resultados para random network coding
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
In this paper, the performance of the network coded amplify-forward cooperative protocol is studied. The use of network coding can suppress the bandwidth resource consumed by relay transmission, and hence increase the spectral efficiency of cooperative diversity. A distributed strategy of relay selection is applied to the cooperative scheme, which can reduce system overhead and also facilitate the development of the explicit expressions of information metrics, such as outage probability and ergodic capacity. Both analytical and numerical results demonstrate that the proposed protocol can achieve large ergodic capacity and full diversity gain simultaneously.
Resumo:
Research has been undertaken to investigate the use of artificial neural network (ANN) techniques to improve the performance of a low bit-rate vector transform coder. Considerable improvements in the perceptual quality of the coded speech have been obtained. New ANN-based methods for vector quantiser (VQ) design and for the adaptive updating of VQ codebook are introduced for use in speech coding applications.
Resumo:
The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that spread in the space, which may 'hit' other sensors and are 'scattered' around. At each hit, the relay node forwards the received signal to its nearest neighbour through direction-selective relaying. The authors first derive the distribution that a relay path reaches a prescribed location after undergoing certain number of hops. Subsequently, a closed-form expression of the average received signal strength (RSS) at the destination can be computed as the summation of all signal echoes' energy. Finally, the effect of the anomalous diffusion exponent ß on the mean RSS in a WRSN is studied, for which it is found that the RSS scaling exponent e is given by (3ß-1)/ß. The results would provide useful insight into the design and deployment of large-scale WRSNs in future. © 2011 The Institution of Engineering and Technology.
Resumo:
The characterization and the definition of the complexity of objects is an important but very difficult problem that attracted much interest in many different fields. In this paper we introduce a new measure, called network diversity score (NDS), which allows us to quantify structural properties of networks. We demonstrate numerically that our diversity score is capable of distinguishing ordered, random and complex networks from each other and, hence, allowing us to categorize networks with respect to their structural complexity. We study 16 additional network complexity measures and find that none of these measures has similar good categorization capabilities. In contrast to many other measures suggested so far aiming for a characterization of the structural complexity of networks, our score is different for a variety of reasons. First, our score is multiplicatively composed of four individual scores, each assessing different structural properties of a network. That means our composite score reflects the structural diversity of a network. Second, our score is defined for a population of networks instead of individual networks. We will show that this removes an unwanted ambiguity, inherently present in measures that are based on single networks. In order to apply our measure practically, we provide a statistical estimator for the diversity score, which is based on a finite number of samples.
Resumo:
Models of complex systems with n components typically have order n<sup>2</sup> parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species’ trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.
Resumo:
Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.