83 resultados para pseudojohannite, mineral, uranyl, sulfate, molecular water, hydroxyls, Raman spectroscopy, U-O bond lengths, hydrogen bonds, O-H…O bond lengths

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman microscopy, based upon the inelastic scattering (Raman) of light by molecular species, has been applied as a specific structural probe in a wide range of biomedical samples. The purpose of the present investigation was to assess the potential of the technique for spectral characterization of the porcine outer retina derived from the area centralis, which contains the highest proportion of cone:rod cell ratio in the pig retina. METHODS: Retinal cross-sections, immersion-fixed in 4% (w/v) PFA and cryoprotected, were placed on salinized slides and air-dried prior to direct Raman microscopic analysis at three excitation wavelengths, 785 nm, 633 nm, and 514 nm. RESULTS: Raman spectra of each of the photoreceptor inner and outer segments (PIS, POS) and of the outer nuclear layer (ONL) of the retina acquired at 785 nm were dominated by vibrational features characteristic of proteins and lipids. There was a clear difference between the inner and outer domains in the spectroscopic regions, amide I and III, known to be sensitive to protein conformation. The spectra recorded with 633 nm excitation mirrored those observed at 785 nm excitation for the amide I region, but with an additional pattern of bands in the spectra of the PIS region, attributed to cytochrome c. The same features were even more enhanced in spectra recorded with 514 nm excitation. A significant nucleotide contribution was observed in the spectra recorded for the ONL at all three excitation wavelengths. A Raman map was constructed of the major spectral components found in the retinal outer segments, as predicted by principal component analysis of the data acquired using 633 nm excitation. Comparison of the Raman map with its histological counterpart revealed a strong correlation between the two images. CONCLUSIONS: It has been demonstrated that Raman spectroscopy offers a unique insight into the biochemical composition of the light-sensing cells of the retina following the application of standard histological protocols. The present study points to the considerable promise of Raman microscopy as a component-specific probe of retinal tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Raman spectroscopy has been used for the first time to predict the FA composition of unextracted adipose tissue of pork, beef, lamb, and chicken. It was found that the bulk unsaturation parameters could be predicted successfully [R-2 = 0.97, root mean square error of prediction (RMSEP) = 4.6% of 4 sigma], with cis unsaturation, which accounted for the majority of the unsaturation, giving similar correlations. The combined abundance of all measured PUFA (>= 2 double bonds per chain) was also well predicted with R-2 = 0.97 and RMSEP = 4.0% of 4 sigma. Trans unsaturation was not as well modeled (R-2 = 0.52, RMSEP = 18% of 4 sigma); this reduced prediction ability can be attributed to the low levels of trans FA found in adipose tissue (0.035 times the cis unsaturation level). For the individual FA, the average partial least squares (PLS) regression coefficient of the 18 most abundant FA (relative abundances ranging from 0.1 to 38.6% of the total FA content) was R-2 = 0.73; the average RMSEP = 11.9% of 4 sigma. Regression coefficients and prediction errors for the five most abundant FA were all better than the average value (in some cases as low as RMSEP = 4.7% of 4 sigma). Cross-correlation between the abundances of the minor FA and more abundant acids could be determined by principal component analysis methods, and the resulting groups of correlated compounds were also well-predicted using PLS. The accuracy of the prediction of individual FA was at least as good as other spectroscopic methods, and the extremely straightforward sampling method meant that very rapid analysis of samples at ambient temperature was easily achieved. This work shows that Raman profiling of hundreds of samples per day is easily achievable with an automated sampling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C-4-C-24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements. It was found that for liquid FAME the best internal standard band was the carbonyl stretching vibration nu(C = O), whose position is affected by changes in sample chain length and physical state; in the samples studied here, it was found to lie between 1729 and 1748 cm(-1). Further, molar unsaturation could be correlated with the ratio of the nu(C = O) to either nu(C = C) or delta(H-C = ) with R-2 > 0.995. Chain length was correlated with the delta(CH2)(tw)/nu(C = O) ratio, (where "tw" indicates twisting) but separate plots for odd- and even-numbered carbon chains were necessary to obtain R-2 > 0.99 for liquid samples. Combining the odd- ani even-numbered carbon chain data in a single plot reduced the correlation to R-2 = 0.94-0.96, depending on the band ratios used. For molal unsaturation the band ratio that correlated linearly with unsaturation (R-2 > 0.99) was nu(C = C)/delta(CH2)(SC) (where "sc" indicates scissoring). Other band ratios show much more complex behavior with changes in chemical and physical structure. This complex behavior results from the fact that the bands do not arise from simple vibrations of small, discrete regions of the molecules but are due to complex motions of large sections of the FAME so that making incremental changes in structure does not necessarily lead to simple incremental changes in spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy has been used to predict the abundance of the FA in clarified butterfat that was obtained from dairy cows fed a range of levels of rapeseed oil in their diet. Partial least squares regression of the Raman spectra against FA compositions obtained by GC showed good prediction for the five major (abundance >5%) FA with R-2=0.74-0.92 and a root mean SE of prediction (RMSEP) that was 5-7% of the mean. In general, the prediction accuracy fell with decreasing abundance in the sample, but the RMSEP was 1.25%. The Raman method has the best prediction ability for unsaturated FA (R-2=0.85-0.92), and in particular trans unsaturated FA (best-predicted FA was 18:1 tDelta9). This enhancement was attributed to the isolation of the unsaturated modes from the saturated modes and the significantly higher spectral response of unsaturated bonds compared with saturated bonds. Raman spectra of the melted butter samples could also be used to predict bulk parameters calculated from standard analyzes, such as iodine value (R-2=0.80) and solid fat content at low temperature (R-2=0.87). For solid fat contents determined at higher temperatures, the prediction ability was significantly reduced (R-2=0.42), and this decrease in performance was attributed to the smaller range of values in solid fat content at the higher temperatures. Finally, although the prediction errors for the abundances of each of the FA in a given sample are much larger with Raman than with full GC analysis, the accuracy is acceptably high for quality control applications. This, combined with the fact that Raman spectra can be obtained with no sample preparation and with 60-s data collection times, means that high-throughput, on-line Raman analysis of butter samples should be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this tutorial review is to show how surface-enhanced Raman (SERS) and resonance Raman (SERRS) spectroscopy have evolved to the stage where they can be used as a quantitative analytical technique. SER(R)S has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets, particularly since low cost, compact spectrometers can read the high signal levels that SER(R)S typically provides. These advantages over conventional Raman measurements come at the cost of increased complexity and this review discusses the factors that need to be controlled to generate stable and reproducible SER(R)S calibrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipicolinic acid (DPA) is an excellent marker compound for bacterial spores, including those of Bacillus anthracis ( anthrax). Surface-enhanced Raman spectroscopy (SERS) potentially has the sensitivity and discrimination needed for trace DPA analysis, but mixing DPA solutions with citrate-reduced silver colloid only yielded measurable SERS spectra at much higher (> 80 ppm) concentrations than would be desirable for anthrax detection. Aggregation of the colloid with halide salts eliminated even these small DPA bands but aggregation with Na2SO4(aq) resulted in a remarkable increase in the DPA signals. With sulfate aggregation even 1 ppm solutions gave detectable signals with 10 s accumulation times, which is in the sensitivity range required. Addition of CNS- as an internal standard allowed quantitative DPA analysis, plotting the intensity of the strong DPA 1010 cm(-1) band (normalised to the ca. 2120 cm(-1) CNS- band) against DPA concentration gave a linear calibration (R-2 = 0.986) over the range 0 - 50 ppm DPA. The inclusion of thiocyanate also allows false negatives due to accidental deactivation of the enhancing medium to be detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the effects of polymeric components on the physical state of chlorhexidine within bioadhesive, semisolid formulations using Raman spectroscopy. Semisolid formulations were prepared in which chlorhexidine base (CHX, 5%w/w, particle size

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy is a noninvasive, nondestructive tool for capturing multiplexed biochemical information across diverse molecular species including proteins, lipids, DNA, and mineralizations. Based on light scattering from molecules, cells, and tissues, it is possible to detect molecular fingerprints and discriminate between subtly different members of each biochemical class. Raman spectroscopy is ideal for detecting perturbations from the expected molecular structure such as those occurring during senescence and the modification of long-lived proteins by metabolic intermediates as we age. Here, we describe the sample preparation, data acquisition, signal processing, data analysis and interpretation involved in using Raman spectroscopy for detecting age-related protein modifications in complex biological tissues.