45 resultados para protoplanetary disks

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and UV irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains are numerically computed by solving the coagulation equation for settling dust particles, with the result that the mass and total surface area of dust grains per unit volume of the gas in the disks are very small, except at the midplane. The H2 level populations and line emission are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk and in the surface layer, while the UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-rayinduced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the dust properties. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient. This makes the level populations change from LTE to non-LTE distributions, which results in changes to the line ratios. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We study the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (100 K) inner region of protoplanetary disks.
Methods. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly by the evaporation of warm ice mantles, to demonstrate how its abundance profile and line emission depend on the accretion flow.
Results. Our results indicate that some evaporated molecules retain high abundances only when the accretion velocity is sufficiently high, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of 10 AU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, ~140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas–grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H2O and CO2. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH3OH, HCOOCH3, and CH3OCH3 to potentially observable values (i.e., a fractional abundance of greater than 10-11).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO+, N2H+, H2O, CO2, and CH3OH. The only molecule significantly affected by the X-ray ionization is N2H+, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H2 and C+/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable "dead zone" where accretion is suppressed, present in a layer, Z/R lsim 0.1-0.2, in the disk midplane, within R ˜ 200 AU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase.

Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA.

Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations.

Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances similar to 10(-6)-10(-4) that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, similar to 10(-12)-10(-7). Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards T Tauri star-disk systems. There is poor agreement with HC3(N) lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA "Full Science" capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun's natal disk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared water line emission from protoplanetary disks, recently observed by the Spitzer and Herschel space telescopes, is thought to trace the surface layer of the inner to outer regions of the disks. We have modelled the water abundance profile and line emission, especially focusing on the effects of dust size growth and turbulent mixing. Comparison between model calculations and observations suggests a small grain model with turbulent mixing is preferred. Copyright © International Astronomical Union 2014.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present optical spectra of pre-main-sequence (PMS) candidates around the Ha region taken with the Southern African Large Telescope in the low metallicity (Z) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of Z similar to 1/5 Z(circle dot). It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, (M) over dot(acc), are a function of Z. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-Z star-forming region. Our data set was enlarged with literature data of H alpha emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 and 2 M-circle dot and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of Two Micron All Sky Survey and Spitzer infrared photometry. We find (M) over dot(acc) in the 1-2 M-circle dot interval to depend quasi-quadratically on stellarmass, with (M) over dot(acc) proportional to M-*(2.4 +/- 0.35), and inversely with stellar age, with (M) over dot(acc) proportional to t(*)(-0.7 +/- 0.4). Furthermore, we compare our spectroscopic (M) over dot(acc) measurements with solar Z Galactic PMS stars in the same mass range, but, surprisingly find no evidence for a systematic change in (M) over dot(acc) with Z. We show that literature accretion-rate studies are influenced by detection limits, and we suggest that (M) over dot(acc) may be controlled by factors other than Z(*), M-*, and age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (>3σ), reaching a peak signal-to-noise of 5.5σ, with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3 x 10-12 – 4 x 10-11 (with respect to H2) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈30 au, reaching a column density ≈3–6 x 1012 cm−2. In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation.