25 resultados para propulsion
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Current high temperature superconducting (HTS) wires exhibit high current densities enabling their use in electrical rotating machinery. The possibility of designing high power density superconducting motors operating at reasonable temperatures allows for new applications in mobile systems in which size and weight represent key design parameters. Thus, all-electric aircrafts represent a promising application for HTS motors. The design of such a complex system as an aircraft consists of a multi-variable optimization that requires computer models and advanced design procedures. This paper presents a specific sizing model of superconducting propulsion motors to be used in aircraft design. The model also takes into account the cooling system. The requirements for this application are presented in terms of power and dynamics as well as a load profile corresponding to a typical mission. We discuss the design implications of using a superconducting motor on an aircraft as well as the integration of the electrical propulsion in the aircraft, and the scaling laws derived from physics-based modeling of HTS motors.
Resumo:
1. Freshly isolated sheep lymphatic smooth muscle cells were studied using the perforated patch-clamp technique. Hyperpolarisation with constant-current pulses caused a time-dependent rectification evident as a depolarising 'sag' followed by an anode-break overshoot at the end of the pulse. Both sag and overshoot were blocked with 1 mM Cs+. 2. Cells were voltage clamped at -30 mV and stepped to -120 mV in 10 mV steps of 2 s duration. Steps negative to -60 mV evoked a slowly activating, non-inactivating inward current which increased in size and rate of activation with increasing hyperpolarisation. 3. The slowly activating current was reduced in Na+-free bathing solution but enhanced when the extracellular K+ concentration was increased to 60 mM. The current was significantly reduced by 1 mM Cs+ and 1 microM ZD7288 but not by 1.8 mM Ba2+. 4. The steady-state activation curve of the underlying conductance showed a threshold at -50 mV and half-maximal activation at -81 mV. Neither threshold nor half-maximal activation was significantly affected by increasing the external K+ concentration to 60 mM. 5. The frequency of spontaneous contractions and fluid propulsion in isolated cannulated segments of sheep mesenteric lymphatics were decreased by 1 mM Cs+ and by 1 microM ZD7288. 6. We conclude that sheep lymphatics have a hyperpolarisation-activated inward current similar to the If seen in sinoatrial node cells of the heart. Blockade of this current slows spontaneous pumping in intact lymphatic vessels suggesting that it is important in normal pacemaking.
Resumo:
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Resumo:
Renewable energy is generally accepted as an important component of future electricity grids. In late 2008, the Government of the Republic of Ireland set a target of 10% of all vehicles in its transport fleet be powered by electricity by 2020. This paper examines the potential contributions Electric Vehicles (EVs) can make to facilitate increased electricity generation from variable renewable sources such as wind generation in the Republic of Ireland. It also presents an overview of the technical and economic issues associated with this target.
Resumo:
The international introduction of electric vehicles (EVs) will see a change in private passenger car usage, operation and management. There are many stakeholders, but currently it appears that the automotive industry is focused on EV manufacture, governments and policy makers have highlighted the potential environmental and job creation opportunities while the electricity sector is preparing for an additional electrical load on the grid system. If the deployment of EVs is to be successful the introduction of international EV standards, universal charging hardware infrastructure, associated universal peripherals and user-friendly software on public and private property is necessary. The focus of this paper is to establish the state-of-the-art in EV charging infrastructure, which includes a review of existing and proposed international standards, best practice and guidelines under consideration or recommendation.
Resumo:
Electric vehicles (EV) do not emit tailpipe exhaust fumes in the same manner as internal combustion engine vehicles. Optimal benefits can only be achieved, if EVS are deployed effectively, so that the tailpipe emissions are not substituted by additional emissions in the electricity sector. This paper examines the potential contributions that Plug in Hybrid Electric Vehicles can make in reducing carbon dioxide. The paper presents the results of the generation expansion model for Northern Ireland and the Republic of Ireland built using the dynamic programming based long term generation expansion planning tool called the Wien Automatic System Planning IV tool. The model optimizes power dispatch using hourly electricity demand curves for each year up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. In order to simulate the effect of PHEV, two distinct charging scenarios are applied based on a peak tariff and an off peak tariff. The importance and influence of the charging regime on the amount of energy used and gaseous emissions displaced is determined and discussed.
Resumo:
The performance of a louver-cooling scheme on a flat plate was analyzed using a detached-eddy-simulation turbulence model. It was assumed that the louver-cooling scheme was tested in a wind tunnel with the mainstream flow velocity of 20 m/s, equivalent to a Reynolds number of 16,200, based on the jet diameter. Turbulence closure was achieved by a realizable k-e-based detached-eddy-simulation turbulence model. Solutions of two blowing ratios of 0.5 and 1 were successfully obtained by running parallel on 16 nodes on a computer cluster. The flowfields were found to be highly unsteady and oscillatory in nature, with the maximum fluctuation of the adiabatic effectiveness as high as 15% of the time-averaged value. It is shown that the fluctuations in the adiabatic effectiveness are mainly caused by the spanwise fluctuation of the coolant jet and the unsteady vortical structures created by the interaction of the jet and the mainstream.