21 resultados para problem complexity

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a reduced-complexity soft-interference-cancellation minimum mean-square-error.(SIC-MMSE) iterative equalization method for severe time-dispersive multiple-input-multiple-output (MIMO) channels is proposed. To mitigate the severe time dispersiveness of the channel, a single carrier with cyclic prefix is employed, and the equalization is per-formed in the frequency domain. This simplifies the challenging problem of equalization in MIMO channels due to both the intersymbol interference (ISI) and the coantenna interference (CAI). The proposed iterative algorithm works in two stages. The first stage estimates the transmitted frequency-domain symbols using a low-complexity SIC-MMSE equalizer. The second stage converts the estimated frequency-domain symbols in the time domain and finds their means and variances to incorporate in the SIC-MMSE equalizer in the next iteration. Simulation results show the bit-/symbol-error-rate performance of the SIC-MMSE equalizer, with and without coding, for various modulation schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last century has witnessed a dramatic increase in the wealth of European nations and the well being of their inhabitants. The focus has, however, largely been upon economic growth to the detriment of people and the environment. It is only in recent years that governments have taken cognisance of the impacts of our actions and there is a growing realisation that the causal factors must be identified and addressed as a matter of urgency. One of the key problem areas is pollution and as such environmental protection has become increasingly important as a mechanism for safeguarding the quality of air, water and land. This involves a range of activities from setting standards to monitoring and reporting on discharges and emissions, through to the enforcement of legislation. In theory, this is a simple challenge, in practice, it has proven to be an extremely complex equation that might only begin to be addressed through research. In this context it is strange, and alarming, to find that while it is an axiom of good practice that policy is informed by research there has been a dearth of investigation in this field. The purpose of this paper is, therefore, to consider the issue of pollution, how it impacts on the environment, what measures have been established in pursuit of reducing the number of incidences and, most significantly, which strategies might be employed to avoid or ameliorate detrimental impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The evaluation of the complexity of an observed object is an old but outstanding problem. In this paper we are tying on this problem introducing a measure called statistic complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high performance, low computational complexity detection algorithms is a key challenge for real-time Multiple-Input Multiple-Output (MIMO) communication system design. The Fixed-Complexity Sphere Decoder (FSD) algorithm is one of the most promising approaches, enabling quasi-ML decoding accuracy and high performance implementation due to its deterministic, highly parallel structure. However, it suffers from exponential growth in computational complexity as the number of MIMO transmit antennas increases, critically limiting its scalability to larger MIMO system topologies. In this paper, we present a solution to this problem by applying a novel cutting protocol to the decoding tree of a real-valued FSD algorithm. The new Real-valued Fixed-Complexity Sphere Decoder (RFSD) algorithm derived achieves similar quasi-ML decoding performance as FSD, but with an average 70% reduction in computational complexity, as we demonstrate from both theoretical and implementation perspectives for Quadrature Amplitude Modulation (QAM)-MIMO systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) requires an expensive linear amplifier at the transmitter due to its high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SC-CP) is a closely related transmission scheme that possesses most of the benefits of OFDM but does not have the PAPR problem. Although in a multipath environment, SC-CP is very robust to frequency-selective fading, it is sensitive to the time-selective fading characteristics of the wireless channel that disturbs the orthogonality of the channel matrix (CM) and increases the computational complexity of the receiver. In this paper, we propose a time-domain low-complexity iterative algorithm to compensate for the effects of time selectivity of the channel that exploits the sparsity present in the channel convolution matrix. Simulation results show the superior performance of the proposed algorithm over the standard linear minimum mean-square error (L-MMSE) equalizer for SC-CP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization and the definition of the complexity of objects is an important but very difficult problem that attracted much interest in many different fields. In this paper we introduce a new measure, called network diversity score (NDS), which allows us to quantify structural properties of networks. We demonstrate numerically that our diversity score is capable of distinguishing ordered, random and complex networks from each other and, hence, allowing us to categorize networks with respect to their structural complexity. We study 16 additional network complexity measures and find that none of these measures has similar good categorization capabilities. In contrast to many other measures suggested so far aiming for a characterization of the structural complexity of networks, our score is different for a variety of reasons. First, our score is multiplicatively composed of four individual scores, each assessing different structural properties of a network. That means our composite score reflects the structural diversity of a network. Second, our score is defined for a population of networks instead of individual networks. We will show that this removes an unwanted ambiguity, inherently present in measures that are based on single networks. In order to apply our measure practically, we provide a statistical estimator for the diversity score, which is based on a finite number of samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enable reliable data transfer in next generation Multiple-Input Multiple-Output (MIMO) communication systems, terminals must be able to react to fluctuating channel conditions by having flexible modulation schemes and antenna configurations. This creates a challenging real-time implementation problem: to provide the high performance required of cutting edge MIMO standards, such as 802.11n, with the flexibility for this behavioural variability. FPGA softcore processors offer a solution to this problem, and in this paper we show how heterogeneous SISD/SIMD/MIMD architectures can enable programmable multicore architectures on FPGA with similar performance and cost as traditional dedicated circuit-based architectures. When applied to a 4×4 16-QAM Fixed-Complexity Sphere Decoder (FSD) detector we present the first soft-processor based solution for real-time 802.11n MIMO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity may be seen as a scientific measure of the complexity of a biological system, implying an information basis. Complexity cannot be directly valued, so economists have tried to define the services it provides, though often just valuing the services of 'key' species. Here we provide a new definition of biodiversity as a measure of functional information, arguing that complexity embodies meaningful information as Gregory Bateson defined it. We argue that functional information content (FIC) is the potentially valuable component of total (algorithmic) information content (AIC), as it alone determines biological fitness and supports ecosystem services. Inspired by recent extensions to the Noah's Ark problem, we show how FIC/AIC can be calculated to measure the degree of substitutability within an ecological community. Establishing substitutability is an essential foundation for valuation. From it, we derive a way to rank whole communities by Indirect Use Value, through quantifying the relation between system complexity and the production rate of ecosystem services. Understanding biodiversity as information evidently serves as a practical interface between economics and ecological science. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We define a multi-modal version of Computation Tree Logic (ctl) by extending the language with path quantifiers E and A where d denotes one of finitely many dimensions, interpreted over Kripke structures with one total relation for each dimension. As expected, the logic is axiomatised by taking a copy of a ctl axiomatisation for each dimension. Completeness is proved by employing the completeness result for ctl to obtain a model along each dimension in turn. We also show that the logic is decidable and that its satisfiability problem is no harder than the corresponding problem for ctl. We then demonstrate how Normative Systems can be conceived as a natural interpretation of such a multi-dimensional ctl logic. © 2009 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. The "obvious" lower bounds of O(m) messages (m is the number of edges in the network) and O(D) time (D is the network diameter) are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results that show that even O(n) (n is the number of nodes in the network) is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms (except for the limited case of comparison algorithms, where it was also required that some nodes may not wake up spontaneously, and that D and n were not known).

We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (such algorithms should work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make anyuse of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time algorithm is known. A slight adaptation of our lower bound technique gives rise to an O(m) message lower bound for randomized broadcast algorithms.

An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. (The answer is known to be negative in the deterministic setting). We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polar codes are one of the most recent advancements in coding theory and they have attracted significant interest. While they are provably capacity achieving over various channels, they have seen limited practical applications. Unfortunately, the successive nature of successive cancellation based decoders hinders fine-grained adaptation of the decoding complexity to design constraints and operating conditions. In this paper, we propose a systematic method for enabling complexity-performance trade-offs by constructing polar codes based on an optimization problem which minimizes the complexity under a suitably defined mutual information based performance constraint. Moreover, a low-complexity greedy algorithm is proposed in order to solve the optimization problem efficiently for very large code lengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values on a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The result of inferences with such models depends on the irrelevance/independence concept adopted. In this paper, we study the computational complexity of inferences under the concepts of epistemic irrelevance and strong independence. We strengthen complexity results by showing that inferences with strong independence are NP-hard even in credal trees with ternary variables, which indicates that tractable algorithms, including the existing one for epistemic trees, cannot be used for strong independence. We prove that the polynomial time of inferences in credal trees under epistemic irrelevance is not likely to extend to more general models, because the problem becomes NP-hard even in simple polytrees. These results draw a definite line between networks with efficient inferences and those where inferences are hard, and close several open questions regarding the computational complexity of such models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the Bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that inferences can be performed in linear time if there is a single observed node, which is a relevant practical case. Because our proof is constructive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynomial-time algorithm for SQPNs. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.