100 resultados para precision experiment
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In order to carry out high-precision machining of aerospace structural components with large size, thin wall and complex surface, this paper proposes a novel parallel kinematic machine (PKM) and formulates its semi-analytical theoretical stiffness model considering gravitational effects that is verified by stiffness experiments. From the viewpoint of topology structure, the novel PKM consists of two substructures in terms of the redundant and overconstrained parallel mechanisms that are connected by two interlinked revolute joints. The theoretical stiffness model of the novel PKM is established based upon the virtual work principle and deformation superposition principle after mapping the stiffness models of substructures from joint space to operated space by Jacobian matrices and considering the deformation contributions of interlinked revolute joints to two substructures. Meanwhile, the component gravities are treated as external payloads exerting on the end reference point of the novel PKM resorting to static equivalence principle. This approach is proved by comparing the theoretical stiffness values with experimental stiffness values in the same configurations, which also indicates equivalent gravity can be employed to describe the actual distributed gravities in an acceptable accuracy manner. Finally, on the basis of the verified theoretical stiffness model, the stiffness distributions of the novel PKM are illustrated and the contributions of component gravities to the stiffness of the novel PKM are discussed.
Resumo:
Motion transparency provides a challenging test case for our understanding of how visual motion, and other attributes, are computed and represented in the brain. However, previous studies of visual transparency have used subjective criteria which do not confirm the existence of independent representations of the superimposed motions. We have developed measures of performance in motion transparency that require observers to extract information about two motions jointly, and therefore test the information that is simultaneously represented for each motion. Observers judged whether two motions were at 90 to one another; the base direction was randomized so that neither motion taken alone was informative. The precision of performance was determined by the standard deviations (S.D.s) of probit functions fitted to the data. Observers also made judgments of orthogonal directions between a single motion stream and a line, for one of two transparent motions against a line and for two spatially segregated motions. The data show that direction judgments with transparency can be made with comparable accuracy to segregated (non-transparent) conditions, supporting the idea that transparency involves the equivalent representation of two global motions in the same region. The precision of this joint direction judgment is, however, 2–3 times poorer than that for a single motion stream. The precision in directional judgment for a single stream is reduced only by a factor of about 1.5 by superimposing a second stream. The major effect in performance, therefore, appears to be associated with the need to compute and compare two global representations of motion, rather than with interference between the dot streams per se. Experiment 2tested the transparency of motions separated by a range of angles from 5 to 180 by requiring subjects to set a line matching the perceived direction of each motion. The S.D.s of these settings demonstrated that directions of transparent motions were represented independently for separations over 20. Increasing dot speeds from 1 to 10 deg/s improved directional performance but had no effect on transparency perception. Transparency was also unaffected by variations of density between 0.1 and 19 dots/deg2
Resumo:
Can learning quality be maintained in the face of increasing class size by the use of Computer Supported Co-operative Learning (CSCL) technologies? In particular, can Computer-Mediated Communication promote critical thinking in addition to surface information transfer? We compared face-to-face seminars with asynchronous computer conferencing in the same Information Management class. From Garrison's theory of critical thinking and Henri's critical reasoning skills, we developed two ways of evaluating critical thinking: a student questionnaire and a content analysis technique. We found evidence for critical thinking in both situations, with some subtle differences in learning style. This paper provides an overview of this work.
Resumo:
This article takes issue with those who assume that the responsibility for bad outcomes in social work, such as child deaths, is appropriately laid at the feet of individual workers. It examines the philosophical origins of such arguments, some recent applications within social work literature and their appropriateness to the realities of social work practice. The author argues that a morality of social work must recognize the social and organizational context in which it occurs.
Resumo:
This paper presents a new strategy, “state-by-state transient screening”, for kinetic characterization of states of a multicomponent catalyst as applied to TAP pulse-response experiments. The key idea is to perform an insignificant chemical perturbation of the catalytic system so that the known essential characteristics of the catalyst (e.g. oxidation degree) do not change during the experiment. Two types of catalytic substances can be distinguished: catalyst state substances, which determine the catalyst state, and catalyst dynamic substances, which are created by the perturbation. The general methodological and theoretical framework for multi-pulse TAP experiments is developed, and the general model for a one-pulse TAP experiment is solved. The primary kinetic characteristics, basic kinetic coefficients, are extracted from diffusion–reaction data and calculated as functions of experimentally measured exit-flow moments without assumptions regarding the detailed kinetic mechanism. The new strategy presented in this paper provides essential information, which can be a basis for developing a detailed reaction mechanism. The theoretical results are illustrated using furan oxidation over a VPO catalyst.
Resumo:
The University of Waikato, Hamilton, New Zealand and The Queen's University of Belfast, Northern Ireland radiocarbon dating laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus petraea) from Great Britain and cedar (Libocedrus bidwillii) and silver pine (Lagarostrobos colensoi) from New Zealand. The results show an average hemispheric offset over the 900 yr of measurement of 40±13 yr. This value is not constant but varies with a periodicity of about 130 yr. The Northern Hemisphere measurements confirm the validity of the Pearson et al. (1986) calibration dataset.
Resumo:
The state-by-state transient screening approach based on a pulse-response thin-zone TAP experiment is further developed whereby single-pulse kinetic tests are treated as small perturbations to catalyst compositions and analyzed using integral method of moments. Results on three primary kinetic characteristics, termed basic kinetic coefficients, are presented. These three coefficients were introduced as main observables from experimentally measured TAP-responses in a kinetic-model-free manner. Each was analytically determined from moments of responses with no assumption about the detailed kinetic model. In this paper, the inverse question of how well these coefficients represent the time evolution of the observed responses is addressed. Sets of three basic kinetic coefficients are calculated from model and experimental responses and these calculated values are used to generate 3-coefficient curves in a kinetic-model-free manner. The comparison of these 3-coefficient curves with original responses shows that three basic kinetic coefficients can be sufficient to describe the observed kinetics of exit flow time dependencies with no assumption regarding the detailed kinetic model.
Resumo:
The application of precision grinding for the formation of a silicon diaphragm is investigated. The test structures involved 2-6 mm diam diaphragms with thicknesses in the range of 25-150 //m. When grinding is performed without supporting the diaphragm, bending occurs due to nonuniform removal of the silicon material over the diaphragm region. The magnitude of bending depends on the µNal thickness of the diaphragm. The results demonstrate that the use of a porous silicon support can significantly reduce the amount of bending, by a factor of up to 300 in the case of 50 m thick diaphragms. The use of silicon on insulator (SOI) technology can also suppress or eliminate bending although this may be a less economical process. Stress measurements in the diaphragms were performed using x-ray and Raman spectroscopies. The results show stress of the order of 1 X107-! X108 Pa in unsupported and supported by porous silicon diaphragms while SOI technology provides stress-free diaphragms. Results obtained from finite element method analysis to determine deterioration in the performance of a 6 mm diaphragm due to bending are presented. These results show a 10% reduction in performance for a 75 µm thick diaphragm with bending amplitude of 30 fim, but negligible reduction if the bending is reduced to
Resumo:
We report here the first detection of hectometer-size objects by the method of serendipitous stellar occultation. This method consists of recording the diffraction shadow created when an object crosses the observer's line of sight and occults the disk of a background star. One of our detections is most consistent with an object between Saturn and Uranus. The two other diffraction patterns detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than previously believed and that the outer part of the disk could be composed of smaller objects than the inner part. This gives critical clues to understanding the problem of the formation of the outer planets of the solar system.