5 resultados para potentiometric titration

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The H+NO2 titration scheme for the determination of atomic hydrogen densities within a microwave excited flow tube reactor has been investigated by laser-induced fluorescence spectroscopy in the vacuum UV. Absolute hydrogen densities are determined on the basis of calibration by Rayleigh scattering from argon. The measurement is performed at a gas mixture containing 0.5% of D2 added to the main gas H2. The ground state density of the hydrogen atoms generated in the flow tube reactor was inferred from the fluorescence radiation of the spectrally shifted optically thin D-Lyman-a transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Elevated C-reactive protein (CRP) concentration is a risk factor for cardiovascular events that may add prognostic information. Statin treatment is associated with significant reductions in CRP concentrations, which appear to be unrelated to the magnitude of LDL-cholesterol reduction. We investigated the effect of atorvastatin, across its dose range, on high sensitivity (hs)CRP in subjects at high cardiovascular risk. Methods: ACTFAST was a 12 week, prospective, multicenter, open-label trial in which high-risk subjects were assigned a starting dose of atorvastatin (10, 20, 40 or 80 mg/d) based on LDL-C and status of statin use at screening (1345 statin-free [ SF] and 772 previously statin-treated [ST]). Results: At baseline, ST subjects had significantly lower hsCRP levels than SF subjects (ST group 2.31, 95% CI 2.15, 2.48 mg/L vs. SF group 3.16, 95% CI 2.98, 3.34 mg/L, p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases.