28 resultados para posture
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In older adults, cognitive resources play a key role in maintaining postural stability. In the present study, we evaluated whether increasing postural instability using sway referencing induces changes in resource allocation in dual-task performance leading older adults to prioritize the more age-salient posture task over a cognitive task. Young and older adults participated in the study which comprised two sessions. In the first session, three posture tasks (stable, sway reference visual, sway reference somatosensory) and a working memory task (n-back) were examined. In the second session, single- and dual-task performance of posture and memory were assessed. Postural stability improved with session. Participants were more unstable in the sway reference conditions, and pronounced age differences were observed in the somatosensory sway reference condition. In dual-task performance on the stable surface, older adults showed an almost 40% increase in instability compared to single-task. However, in the sway reference somatosensory condition, stability was the same in single- and dual-task performance, whereas pronounced (15%) costs emerged for cognition. These results show that during dual-tasking while standing on a stable surface, older adults have the flexibility to allow an increase in instability to accommodate cognitive task performance. However, when instability increases by means of compromising somatosensory information, levels of postural control are kept similar in single- and dual-task, by utilizing resources otherwise allocated to the cognitive task. This evidence emphasizes the flexible nature of resource allocation, developed over the life-span to compensate for age-related decline in sensorimotor and cognitive processing.
Resumo:
We investigated adult age differences in dual-task costs in cognitive-sensorimotor settings without concurrent response production and with individually adjusted resource demands for the cognitive task. Twenty-four young adults (M=25.42 years, SD=3.55) and 23 older adults (M=68 years, SD=4.46) performed a cognitive task and two postural control tasks (standing on a stable and moving platform) both separately (single-task context) and concurrently (dual-task context). The cognitive task did not require response production during posture data collection and its difficulty was individually adjusted to 80% correct performance under single-task conditions. Results showed pronounced age differences in postural control in the moving platform condition, which increased further under dual-task conditions. Our findings support the assumption of increased cognitive resource demands for postural control in older adults. They extend existing work by taking two shortcomings of previous studies into account. We discuss cognitive and posture task constraints in this and previous studies as factors determining multi-tasking and its changes in later adulthood.
Resumo:
Cerebral palsy (CP) refers to a collection of motor impairments which result in abnormal posture and movement following an insult or damage to the developing brain. Psychological adjustment in children with CP is under researched with little population-based or longitudinal data, but there is sufficient evidence to suggest that children with CP are at increased risk for psychological problems. The types of difficulties they experience include emotional, hyperactivity and peer problems with conduct disorder being more prevalent in mildly affected children. The origins of psychological problems in this group are complex but include ‘disease’ and ‘psychosocial’ factors related to having a brain-based disability in the family, as well as other factors that influence adjustment in all children. There are no intervention studies in children with CP aimed at preventing psychological problems or promoting mental wellbeing. However, evidence from other work suggests it is possible to work with the child and family to develop skills, manage symptoms, and build confidence and resilience. Acting as early as possible has been found to be beneficial for bonding, child development and reducing parental anxiety.
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby
Resumo:
Suddenly changing direction requires a whole body reorientation strategy. In sporting duels such as an attacker vs. a defender in rugby, successful body orientation/reorientation strategies are essential for successful performance. The aim of this study is to examine which biomechanical factors, while taking into account biomechanical constraints, are used by an attacker in a 1 vs. 1 duel in rugby. More specifically we wanted to examine how an attacker tries to deceive the defender yet disguise his intentions by comparing effective deceptive movements (DM+), ineffective deceptive movements (DM-), and non-deceptive movements (NDM). Eight French amateur expert rugby union players were asked to perform DMs and NDMs in a real 1 vs. 1 duel. For each type of movement (DM+, DM-, NDM) different relevant orientation/reorientation parameters, medio-lateral displacement of the center of mass (COM), foot, head, upper trunk, and lower trunk yaw; and upper trunk roll were analyzed and compared. Results showed that COM displacement and lower trunk yaw were minimized during DMs while foot displacement along with head and upper trunk yaw were exaggerated during DMs (DM+ and DM-). This would suggest that the player is using exaggerated body-related information to consciously deceive the defender into thinking he will run in a given direction while minimizing other postural control parameters to disguise a sudden change in posture necessary to modify final running direction. Further analysis of the efficacy of deceptive movements showed how the disguise and deceit strategies needed to be carefully balanced to successfully fool the defender. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Micro-(mi)RNAs play a pivotal role in the developmental regulation of plants and animals. We reasoned that disruption of normal heterochronic activity in differentiating Meloidogyne incognita eggs may lead to irregular development, lethality and by extension, represent a novel target for parasite control On silencing the nuclear RNase III enzyme drosha, a critical effector of miRNA maturation in animals, we found a significant inhibition of normal development and hatching in short interfering (sORNA-soaked M incognita eggs Developing juveniles presented with highly irregular tissue patterning within the egg, and we found that unlike our previous gene silencing efforts focused on FMRFamide (Phe-Met-Arg-Phe-NH2)-like peptides (FLPs), there was no observable phenotypic recovery following removal of the environmental siRNA. Aberrant phenotypes were exacerbated over time, and drosha knockdown proved embryonically lethal Subsequently, we identified and silenced the drosha cofactor pasha, revealing a comparable inhibition of normal embryonic development within the eggs to that of drosha-silenced eggs, eventually leading to embryonic lethality To further probe the link between normal embryonic development and the M. incognita RNA interference (RNAi) pathway, we attempted to examine the impact of silencing the cytosolic RNase III enzyme dicer. Unexpectedly, we found a substantial up-regulation of dicer transcript abundance, which did not impact on egg differentiation or hatching rates. Silencing of the individual transcripts in hatched J2s was significantly less successful and resulted in temporary phenotypic aberration of the J2s. which recovered within 24 h to normal movement and posture on washing out the siRNA. Soaking the J2s in dicer siRNA resulted in a modest decrease in dicer transcript abundance which had no observable impact on phenotype or behaviour within 48 h of initial exposure to siRNA. We propose that drosha, pasha and their ancillary factors may represent excellent targets for novel nematicides and/or in planta controls aimed at M incognita, and potentially other parasitic nematodes, through disruption of miRNA-directed developmental pathways. In addition, we have identified a putative Mi-en-I transcript which encodes an RNAi-inhibiting siRNA exonuclease We observe a marked up-regulation of MI-en-I transcript abundance in response to exogenously introduced siRNA, and reason that this may impact on the interpretation of RN/NI-based reverse genetic screens in plant parasitic nematodes. (C) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling.
Resumo:
The effect of 3 slaughter weights (85.95 or 105 kg) on performance and carcass traits of 481 pigs in single-gender groups of 13 (18 groups of gilts and 19 groups of intact males) was evaluated. Pigs (39.5 +/- 3.3 kg) were fed a liquid diet 3 times daily in a long trough. The behaviour of pigs slaughtered at 105 kg was recorded at 50, 60 and 70 days after the start of the experiment (5 groups of gilts and 4 groups of intact males). Behaviour (active, inactive, feeding) and posture (standing, lying, dog-sitting) of all pigs was recorded at 5-min intervals for 30 min prior to and 1 h after each feeding event. Slaughtering pigs at 95 kg and 105 kg delayed production by 7 and 16 days, respectively, compared to slaughtering at 85 kg (P0.05). Muscle depth increased with increasing slaughter weight (P
Resumo:
Modiolarca tumida (Hanley, 1843) is a member of the sub-family Crenellinae (Mytilidae). The preferred habitat of the species is the test of certain ascidians. The shell is dorsally flattened, which prevents it from cutting into the test during dorso-ventral contraction of the byssal retractors. The use of the byssus enables it to surround itself completely with host tissue. Adoption of the feeding posture involves the anterior-posterior contraction of the byssal retractors, which elevates the posterior margin above the host's surface using the anterior margin as the fulcrum against the host. Modiolarca tumida are attracted by the tunicin of the host, a process probably facilitated by the host's feeding currents. The smallest individuals are found round the oral aperture. Colonization of other parts of the host may result from surface migration as M. tumida can be highly mobile, crawling by means of the very extensible foot. It is during this process that individuals may be swept away in local currents and be forced to adopt a free-living existence.