48 resultados para population bottleneck

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used microsatellite DNA markers to identify the putative parents of 69 litters of nine-banded armadillos (Dasypus novemcinctus) over 4 years. Male and female parents did not differ in any measure of body size in comparisons with nonparents. However, males observed paired with a female were significantly larger than unpaired males, although paired females were the same size as unpaired females. Females categorized as possibly lactating were significantly larger than females that were either definitely lactating or definitely not lactating. There was no evidence of assortative mating: body-size measurements of mothers were not significantly correlated with those of fathers. Nine-banded armadillos give birth to litters of genetically identical quadruplets. Mothers (but not fathers) of female litters were significantly larger than mothers of male litters, and maternal (but not paternal) body size was positively correlated with the number of surviving young within years, but not cumulatively. There were no differences in dates of birth between male and female litters, nor were there any significant relationships between birth date and maternal body size. Body size of either parent was not correlated with the body sizes of their offspring. Cumulative and yearly reproductive success did not differ between reproductively successful males and females. Average reproductive success (which included apparently unsuccessful individuals) also did not differ between males and females. The majority of adults in the population apparently failed to produce any surviving offspring, and even those that did usually did so in only 1 of the 4 years. This low reproductive success is unexpected, given the rapid and successful range extension of this species throughout the southeastern United States in this century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic data from polymorphic microsatellite loci were employed to estimate paternity and maternity in a local population of nine-banded armadillos (Dasypus novemcinctus) in northern Florida. The parentage assessments took advantage of maximum likelihood procedures developed expressly for situations when individuals of neither gender can be excluded a priori as candidate parents. The molecular data for 290 individuals, interpreted alone and in conjunction with detailed biological and spatial information for the population, demonstrate high exclusion probabilities and reasonably strong likelihoods of genetic parentage assignment in many cases; low mean probabilities of successful reproductive contribution to the local population by individual armadillo adults in a given year; and statistically significant microspatial associations of parents and their offspring. Results suggest that molecular assays of highly polymorphic genetic systems can add considerable power to assessments of biological parentage in natural populations even when neither parent is otherwise known.