21 resultados para polarization holographic optical recording

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate an optical quantum memory scheme with V-type three-level atoms based on the controlled reversible inhomogeneous broadening (CRIB) technique. We theoretically show the possibility to store and retrieve a weak light pulse interacting with the two optical transitions of the system. This scheme implements a quantum memory for a polarization qubit - a single photon in an arbitrary polarization state - without the need of two spatially separated two-level media, thus offering the advantage of experimental compactness overcoming the limitations due to mismatching and unequal efficiencies that can arise in spatially separated memories. The effects of a relative phase change between the atomic levels, as well as of phase noise due to, for example, the presence of spurious electric and magnetic fields are analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of thin films comprising gold nanorods embedded in an alumina matrix have been fabricated with lengths ranging from 75 to 330 nm. Their optical properties, expressed in terms of extinction - In(T), where T is optical transmittance, have been measured as a function of wavelength, rod length, angle of incidence, and incident polarization state. The results are compared to a Maxwell-Garnett based theory modified to take into account the strongly anisotropic nature of the medium. Transverse and longitudinal plasmon resonances are observed. The interaction between the nanorods leads to the splitting of the longitudinal resonance with the longer-wavelength resonance being forbidden for direct optical observations. The shorter-wavelength resonance related to the symmetric coupling between longitudinal plasma excitations in the nanorods depends on rod length, polarization state, and angle of incidence of the probing light. The impact of electron confinement on the optical properties of the gold rods is also seen and may be incorporated into the Maxwell-Garnett theory by restricting the mean free path of the conduction electrons to produce excellent agreement between observations and the complete theory. Annealing experiments that modify the physical structure of the gold confirm this conclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ ellipsometry and Kerr polarimetry have been used to follow the continuous evolution of the optical and magneto- optical properties of multiple layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer layer on glass substrates up to a maximum of N = 10 bi-layer periods according to the scheme glass/Pd(10)Ar x (0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the deposition consistently showed strong perpendicular anisotropy at all stages of film growth following the deposition of a single monolayer of Co. Magneto-optic signals associated with the normal-incidence polar Kerr effect indicated strong polarization of Pd atoms at both Co-Pd and Pd-Co interfaces and that the magnitude of the complex magneto-optic Voigt parameter and the magnetic moment of the Pd decrease exponentially with distance from the interface with a decay constant of 1.1 nm(- 1). Theoretical simulations have provided an understanding of the observations and allow the determination of the ultrathin- film values of the elements of the skew-symmetric permittivity tensor that describe the optical and magneto-optical properties for both CO and Pd. Detailed structure in the observed Kerr ellipticity shows distinct Pd-thickness-dependent oscillations with a spatial period of about 1.6 nm that are believed to be associated with quantum well levels in the growing Pd layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the role of dynamic polarization of the target electrons in the process of recombination of electrons with multicharged ions (polarizational recombination). Numerical calculations carried out for a number of Ni- and Ne-like ions demonstrate that the inclusion of polarizational recombination leads to a noticeable increase (up to 30%) in the cross sections for incident electron energies outside the regions of dielectronic resonances. We also present a critical analysis of theoretical approaches used by other authors to describe the phenomenon of polarizational recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective ellipsometric technique to determine parameters that characterize second-harmonic optical and magneto-optical effects in centrosymmetric media within the electric-dipole approximation is proposed and outlined in detail. The parameters, which are ratios of components of the nonlinear-surface-susceptibility tensors, are obtained from experimental data related to the state of polarization of the second-harmonic-generated radiation as a function of the angle between the plane of incidence and the polarization plane of the incident, linearly polarized, fundamental radiation. Experimental details of the technique are described. A corresponding theoretical model is given as an example for a single isotropic surface assuming polycrystalline samples. The surfaces of air-Au and air-Ni (in magnetized and demagnetized states) have been investigated ex situ in ambient air, and the results are presented. A nonlinear, least-squares-minimization fitting procedure between experimental data and theoretical formulas has been shown to yield realistic, unambiguous results for the ratios corresponding to each of the above materials. Independent methods for verifying the validity of the fitting parameters are also presented. The influence of temporal variations at the surfaces on the state of polarization (due to adsorption, contamination, or oxidation) is also illustrated for the demagnetized air-Ni surface. (C) 2005 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

175 nm-thick Ba0.5Sr0.5TiO3 (BST) thin film fabricated by pulsed laser deposition (PLD) technique is found to be a mixture of two distributions of material. We discuss whether these two components are nano-regions of paraelectric and ferroelectric phases, or a bimodal grain-size distribution, or an effect of oxygen vacancy gradient from the electrode interface. The fraction of switchable ferroelectric phase decreases under bipolar pulsed fields, but it recovers after removal of the external fields. The plot of capacitance in decreasing dc voltage (C(Vdown arrow) versus that in increasing dc 61 voltage C(Vup arrow) is a superposition of overlapping of two triangles, in contrast to one well-defined triangle for typical ferroelectric SrBi2Ta2O9 thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nitrogen-vacancy (NV) center in diamond has shown great promise for quantum information due to the ease of initializing the qubit and of reading out its state. Here we show the leading mechanism for these effects gives results opposite from experiment; instead both must rely on new physics. Furthermore, NV centers fabricated in nanometer-sized diamond clusters are stable, motivating a bottom-up qubit approach, with the possibility of quite different optical properties to bulk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A structure comprising a coupled pair of two-dimensional arrays of oblate plasmonic nanoellipsoids in a dielectric host medium is proposed as a superlens in the optical domain for both horizontal and vertical polarizations. By means of simulations it is demonstrated that a structure formed by silver nanoellipsoids is capable of restoring subwavelength features of the object for both polarizations at distances larger than half wavelength. The bandwidth of subwavelength resolution is in all cases very large (above 13%). (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of thin conducting wires with a narrow geometric constriction has been determined by density-functional theory computations in the local spin density approximation. Spontaneous spin polarization arises in nominally paramagnetic wires at sufficiently low density (r(s)>= 15). Real-space spin-polarization maps show a fascinating variety of magnetic structures pinned at the constriction. The frequency-dependent conductivity is different for the spin-up and spin-down channels and significantly lower than in wires of identically vanishing spin polarization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The -phonons of KH2PO4 (KDP) and its deuterated analog DKDP are studied via first-principles linear response calculations. The paraelectric phase shows two instabilities. One for a z-polarized mode, which leads to the spontaneous polarization Ps of the ferroelectric phase. The other corresponds to a two-fold degenerate xy-polarized mode. Other phonons are analyzed, which couple to the ferroelectric one at large amplitudes and are relevant for the ferroelectric transition. We show that Ps is mainly of electronic nature, since it arises mostly from an off-diagonal component of the Born effective charge tensor of H, with minor contribution from P atoms displacements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of mu m-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe and analyse the operation and stabilization of a Mach--Zehnder interferometer, which separates the carrier and the first-order sidebands of a phase-modulated laser field, and which is locked using the H\"ansch--Couillaud method. In addition to the necessary attenuation, our interferometer introduces, via total internal reflection, a significant polarization-dependent phase delay. We employ a general treatment to describe an interferometer with an object which affects the field along one path, and we examine how this phase delay affects the error signal. We discuss the requirements necessary to ensure the lock point remains unchanged when phase modulation is introduced, and we demonstrate and characterize this locking experimentally. Finally, we suggest an extension to this locking strategy using heterodyne detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of gold nanotubes with polypyrrole cores were grown on glass substrates by electrodeposition into thin film porous alumina templates. Measurements of optical transmission revealed strong extinction peaks related to plasmonic resonances, which were sensitive to the polarization state and angle of incidence. On prolonging the electrodeposition of gold, the polypyrrole core became fully encapsulated and this had a dramatic effect on the optical properties of the arrays, which was rationalized by finite element simulation of the local field intensities resulting from plasmon excitation.