53 resultados para plasma steroids
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Plasma cell polyps of the vocal fold (plasma cell granulomas) are rare inflammatory polyps of the larynx. They should be included in the clinical and histological differential diagnosis of laryngeal polyps. Histologically they are polyclonal aggregates of plasma cells. It is essential to distinguish them from monoclonal, neoplastic plasma cell proliferations. The treatment of choice is surgical resection, although radiotherapy, laser ablation, antibiotics and steroids have been used successfully. We present a case of plasma cell granuloma presenting as a vocal fold polyp, treated surgically.
Resumo:
Sex steroids contribute to modulate GH secretion in man. However, both the exact locus and mechanism by which their actions are exerted still remain not clearly understood. We undertook a number of studies designed to ascertain: (1) whether or not sudden or chronic changes in circulating gonadal steroids may affect GH secretion in normal adults; and (2) the reason(s) for gender-related dimorphic pattern of GH release. The pituitary reserve of GH, as evaluated by means of a GHRH challenge, was similar in women with anorexia nervosa and in normally menstruating women. Estrogenic receptor blockade with tamoxifen (TMX) did not significantly change GHRH-induced GH response in these normal women. Therefore, acute or chronic hypoestrogenism apparently had no important effects at level of somatotrophs. In another group of normal women we tested the possibility that changes in circulating estrogens might induce changes in the hypothalamic-somatotroph rhythm (HSR). GHRH challenges were performed throughout a menstrual cycle, and again after having achieved functional ovarian blockade with a GnRH agonist treatment. Short-term ovarian blockade did not significantly affect the parameters of GH response to GHRH, although it was accompanied by an increase in the number of women ina refractory HSR phase at testing. This suggested a low potentiating effect on the basic pattern of somatostatin (SS) release occurring as a consequence of the decrease in circulating estrogens. In normal men, neither the GH response to GHRH nor the HSR were affected by functional testicular blockade (after GnRH agonist treatment). However, the administration of testosterone enanthate (250 mg) to another group of men increased both the GHRH-induced GH release and the number of subjects in a spontaneous secretory HSR phase at testing; these were reversed by estrogenic receptor blockade with TMS. In another group of normal men, the fraction of GH secreted in pulses (FGHP) during a nocturnal sampling period was significantly decreased by testicular blockade. Other parameters of GH secretion, such as the number of GH pulses and their mean amplitude (A), and the mean plasma GH concentration (MCGH), showed a slight, although not significant, decrease following the lack of androgens. The administration of testosterone enanthate (500 mg) reversed these parameters to values similar to those in the basal study. Interestingly, when tamoxifen was given after testosterone enanthate, A, MCGH and FGHP increased to values significantly higher than in any other experimental condition in that study. In all, these data suggest that 17ß-estradiol may participate in GH modulation by inhibiting the hypothalamic release of somatostatin, while testosterone stimulates it. The results obtained after estrogenic receptor blockade appear to indicate that the effect of testosterone in such a modulation is dependent on its aromatization to 17ß-estradiol. The differential levels of this steroid in both sexes might account for the sexual dimorphic pattern of GH secretion. From other data in the literature, obtained in rats, and our preliminary data in children with constitutional delay of growth and puberty, it is tempting to speculate that the effect of 17ß-estradiol may be exerted by modifying the functional activity of a-2 adrenergic pathways involved in the negative modulation of SS release.
Resumo:
This article describes the development of the first ion pair solid phase extraction technique (IPSPE), which has been applied to the extraction of metformin from plasma samples. In addition an ion pair chromatographic method was developed for the specific HPLC determination of metformin. Several extraction and HPLC methods have been described previously for metformin, however, most of them did not solve the problems associated with the high polarity of this drug. Drug recovery in the developed method was found to be more than 98%. The limit of detection and limit of quantification was 3 and 5 ng/ml, respectively. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error, R.E.%) was always less than 6.9%. Stability analysis showed that metformin is stable for at least 3 months when stored at -70degreesC. The method has been applied to 150 patient samples as part of a medication adherence study. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: Vitamin B2 exists in blood as riboflavin and its cofactors, flavin mononucleotide (FMN) and FAD. The erythrocyte glutathione reductase activation coefficient (EGRAC) has traditionally been used to assess vitamin B2 status in humans. We investigated the relationships of EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD in elderly volunteers and their responses to riboflavin administration. Methods: EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD were determined in 124 healthy individuals with a mean age of 69 years. The same measurements were made in a subgroup of 46 individuals with EGRAC 1.20 who participated in a randomized double-blind 12-week intervention study and received riboflavin (1.6 mg/day; n = 23) or placebo (n = 23). Results: Median plasma concentrations were 10.5 nmol/L for riboflavin, 6.6 nmol/L for FMN, and 74 nmol/L for FAD. In erythrocytes, there were only trace amounts of riboflavin, whereas median FMN and FAD concentrations were 44 and 469 nmol/L, respectively. Erythrocyte FMN and FAD correlated with each other and with EGRAC and plasma riboflavin (P