9 resultados para pioglitazone
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Obesity is a low grade inflammatory state associated with premature cardiovascular morbidity and mortality. Along with traditional risk factors the measurement of endothelial function, insulin resistance, inflammation and arterial stiffness may contribute to the assessment of cardiovascular risk. We conducted a randomised placebo controlled trial to assess the effects of 12 weeks treatment with a PPAR-alpha agonist (fenofibrate) and a PPAR-gamma agonist (pioglitazone) on these parameters in obese glucose tolerant men. Arterial stiffness was measured using augmentation index and pulse wave velocity (PWV). E-selectin, VCAM-1 and ICAM-1 were used as markers of endothelial function. Insulin sensitivity improved with pioglitazone treatment (p=0.001) and, in keeping with this, adiponectin increased by 85.2% (p
Resumo:
Aim: Flow-mediated dilation (FMD) is a surrogate marker of endothelial function, which has been proposed as a barometer of vascular health. Impaired microvascular response to reactive hyperaemia is thought to be the mechanism behind reduced shear stress and subsequently impaired FMD, which has been associated with cardiovascular events. This study aims to assess the effect of pioglitazone on the vasculature of patients with impaired glucose tolerance (IGT).
Materials and Methods: Forty IGT patients with no cardiovascular disease were compared with 24 healthy age- and sex-matched controls. Endothelial function was assessed using FMD of the brachial artery. Adiponectin (ADN) levels were measured and insulin sensitivity was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). A randomised double-blind placebo-controlled trial of the IGT subjects was then performed, with subjects receiving either pioglitazone 30 mg od or matched placebo for 12 weeks before the measurements were repeated.
Results: The IGT subjects had a significantly impaired FMD compared with the controls (p < 0.001). Diastolic shear stress (DSS) was also significantly reduced in IGT (p = 0.04). High molecular weight (HMW) ADN was significantly lower in the IGT group than in controls (p = 0.03). On analysis of the IGT group after 12 weeks treatment, FMD was significantly increased in the pioglitazone group compared with placebo (p = 0.03) as was endothelium-independent dilation (EID) (p = 0.03). A significant increase in total ADN (p < 0.001), HMW ADN (p < 0.001) and HMW/total ratio (p = 0.001) occurred in the pioglitazone group compared with placebo.
Conclusions: Pioglitazone improved endothelial function in IGT. Treatment with pioglitazone may reduce the risk of cardiovascular disease in this patient group.
Resumo:
Importance of the field: Type 2 diabetes is typically associated with insulin resistance and dysfunction of insulin-secreting pancreatic beta-cells. Addressing these defects often requires therapy with a combination of differently acting antidiabetic agents. A potential novel combination in development brings together the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin with the thiazolidinedione pioglitazone into a fixed-dose single-tablet combination. The former component acts mainly to increase prandial insulin secretion; the latter improves insulin sensitivity.
Resumo:
Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).
Resumo:
The worldwide epidemic of obesity is a major public health concern and is persuasively linked to the rising prevalence of diabetes and cardiovascular disease. Obesity is often associated with an abnormal lipoprotein profile, which may be partly negated by pioglitazone intervention, as this can influence the composition and oxidation characteristics of low-density lipoprotein (LDL). However, as pioglitazone's impact on these parameters within high-density lipoprotein (HDL), specifically HDL(2&3), is absent from the literature, this study was performed to address this shortcoming.
[[omega-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents.
Resumo:
A series of [(ureidoethoxy)benzyl]-2,4-thiazolidinediones and [[(heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones was synthesized from the corresponding aldehydes. Compds. from the urea series, exemplified by I, showed antihyperglycemic potency comparable with known agents of the type such as pioglitazone and troglitazone (CS-045). The benzoxazole II, a cyclic analog of I, was a very potent enhancer of insulin sensitivity, and by modification of the arom. heterocycle, an aminopyridine, III, was identified as a lead compd. from SAR studies. Evaluation of antihyperglycemic activity together with effects on blood Hb content, to det. the therapeutic index, was performed in 8-day repeat administration studies in genetically obese C57 B1/6 ob/ob mice. From these studies, III (BRL 49653) has been selected, on the basis of antihyperglycemic potency combined with enhanced selectivity against redns. in blood Hb content, for further evaluation.
Resumo:
A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]iodophenyl]2-ethoxy propanoic acid], which is specific for the ? isoform of the peroxisomal proliferator activated receptor (PPAR?), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPAR?1 and to a GST (glutathione S-transferase) fusion protein contg. the ligand binding domain of human PPAR?1 (KD = 70 nM). Using this ligand, the authors characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition expts., rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, resp.). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPAR?1 were comparable with those detd. in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an ?-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPAR?1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPAR? and that the pharmacol. of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.
Resumo:
Objective: Waveform analysis has been used to assess vascular resistance and predict cardiovascular events. We aimed to identify microvascular abnormalities in patients with impaired glucose tolerance (IGT) using ocular waveform analysis. The effects of pioglitazone were also assessed. Methods: Forty patients with IGT and twenty-four controls were studied. Doppler velocity recordings were obtained from the central retinal, ophthalmic and common carotid arteries, and sampled at 200 Hz. A discrete wavelet-based analysis method was employed to quantify waveforms. The resistive index (RI),was also determined. Patients with IGT were randomised to pioglitazone or placebo and measurements repeated after 12 weeks treatment. Results: In the ocular waveforms, significant differences in power spectra were observed in frequency band four (corresponding to frequencies between 6.25 and 12.50 Hz) between groups (p