70 resultados para permanent and transitory shocks

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard microporous materials are typically crystalline solids that exhibit a regular array of cavities of uniform size and shape. Packing and directional bonding between molecular building blocks give rise to interstitial pores that confer size and shape-specific sorption properties to the material. In the liquid state interstitial cavities are transient. However, permanent and intrinsic "pores'' can potentially be built into the structure of the molecules that constitute the liquid. With the aid of computer simulations we have designed, synthesised and characterised a series of liquids composed of hollow cage-like molecules, which are functionalised with hydrocarbon chains to make them liquid at accessible temperatures. Experiments and simulations demonstrate that chain length and size of terminal chain substituents can be used to tune, within certain margins, the permanence of intramolecular cavities in such neat liquids. Simulations identify a candidate "porous liquid'' in which 30% of the cages remain empty in the liquid state. Absorbed methane molecules selectively occupy these empty cavities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive contour scaling of a 200 year old granite church is associated with the breaching of an apparently iron-rich crust and the widespread deposition of atmospheric dust within the canyon-like streetscape of Rio de Janeiro. Contemporary dust, accumulated dust from within the a depression on the building surface, the surface crust and the underlying granite are examined by a combination of total element analysis and sequential extraction, X-ray diffraction and energy dispersive X-ray fluorescence. Results indicate an increase in total organic carbon and a marked decrease in pH within the accumulated dust, and a rapid mobilization of anions and cations from the water-soluble and carbonate phases. It is considered that the latter is linked to salt accumulation within and eventual salt weathering of the granite. Post-depositional alteration of the dust is also linked with the de-silicification of clay minerals (Illite to kaolinite) and the loss of silica from the amorphous Fe/Mn phase of the accumulated dust under the initially saline and progressively more acidic conditions experienced at the stone - atmosphere interface. This mobilization of silica is associated with the formation of what is, in effect, a thin silica-rich surface crust or glaze. Within the glaze, assessory amounts of extractable iron are concentrated within the amorphous and crystalline Fe/Mn phases at levels that are significantly elevated with respect to the underlying granite, but much lower than the equivalent phases of the accumulated dust from which it is principally assumed to derive. The protection afforded to the stone work by the crust is not, however, permanent and within the last 15 years it has been possible to observe a rapid increase in the surface delamination of the church close to street level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper extends Blackburn and Galindev's (Economics Letters, Vol. 79 (2003), pp. 417-421) stochastic growth model in which productivity growth entails both external and internal learning behaviour with a constant relative risk aversion utility function and productivity shocks. Consequently, the relationship between long-term growth and short-term volatility depends not only on the relative importance of each learning mechanism but also on a parameter measuring individuals' attitude towards risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L(-1) with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 mu g L(-1) (mean 220.2 mu g L(-1)) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 mu g L(-1) (mean 85.3 mu g L(-1)) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. 

Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. 

Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. 

Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma. 

Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotational excitation of the carbon monosulphide (CS) molecule by thermal electron-impact is studied using the molecular R-matrix method combined with the adiabatic-nuclei-rotation (ANR) approximation. Rate coefficients are obtained for electron temperatures in the range 5-5000 K and for transitions involving levels up to J = 40. It is confirmed that dipole allowed transitions (Delta J = 1) are dominant and that the corresponding rate coefficients exceed those for excitation by neutrals by at least five orders of magnitude. As a result, the present rates should be included in any detailed population model of CS in sources where the electron fraction is larger than similar to 10(-5), in particular in diffuse molecular clouds and interstellar shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have looked for SiO emission as evidence of shocks in the high mass star formation region G34.26+0.15. JCMT, VLA and FCRAO observations show that SiO emission is widespread across the region. The SiO emission highlights a massive, collimated out ow and other regions where stellar winds are interacting with molecular clumps. As in other star forming regions, there is also SiO at ambient velocities which is related to the out ow activity. No strong SiO abundance enhancement was measured in either the out ow or the low velocity gas, though abundances up to 10(-8) are possible if the SiO is locally enhanced in clumps and optically thick. SiO emission is not detected from the hot core itself, indicating either that SiO is not strongly enhanced in the hot core or that column densities in the region where grain mantle evaporation has taken place are low. In line of sight spiral arm clouds, we measure a SiO abundance of 0.4-2 x 10(-10), consistent with previous estimates for quiescent clouds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The propagation of electron-acoustic solitary waves and shock structures is investigated in a plasma characterized by a superthermal electron population. A three-component plasma model configuration is employed, consisting of inertial (“cold”) electrons, inertialess ? (kappa) distributed superthermal (“hot”) electrons and stationary ions. A multiscale method is employed, leading to a Korteweg-de Vries (KdV) equation for the electrostatic potential (in the absence of dissipation). Taking into account dissipation, a hybrid Korteweg-de Vries-Burgers (KdVB) equation is derived. Exact negative-potential pulse- and kink-shaped solutions (shocks) are obtained. The relative strength among dispersion, nonlinearity and damping coefficients is discussed. Excitations formed in superthermal plasma (finite ?) are narrower and steeper, compared to the Maxwellian case (infinite ?). A series of numerical simulations confirms that energy initially stored in a solitary pulse which propagates in a stable manner for large ? (Maxwellian plasma) may break down to smaller structures or/and to random oscillations, when it encounters a small-? (nonthermal) region. On the other hand, shock structures used as initial conditions for numerical simulations were shown to be robust, essentially responding to changed in the environment by a simple profile change (in width).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Space plasmas provide abundant evidence of highly energetic particle population, resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the evolution of plasmas produced during laser-matter interaction are dominated by nonthermal electrons, as confirmed by experimental observation and computer simulations. This phenomenon is efficiently modelled via a kappa-type distribution. We present an overview, from first principles, of the effect of superthermality on the characteristics of electrostatic plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa distribution function to model excess superthermality of the electron distribution. Focusing on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis, we discuss the role of excess superthermality in their propagation dynamics (existence laws, stability profile), geometric characteristics and stability. Numerical simulations are employed to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as well as the modulational stability profile of bright- and dark-type envelope solitons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.