180 resultados para partner selection
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This study examines the relation between selection power and selection labor for information retrieval (IR). It is the first part of the development of a labor theoretic approach to IR. Existing models for evaluation of IR systems are reviewed and the distinction of operational from experimental systems partly dissolved. The often covert, but powerful, influence from technology on practice and theory is rendered explicit. Selection power is understood as the human ability to make informed choices between objects or representations of objects and is adopted as the primary value for IR. Selection power is conceived as a property of human consciousness, which can be assisted or frustrated by system design. The concept of selection power is further elucidated, and its value supported, by an example of the discrimination enabled by index descriptions, the discovery of analogous concepts in partly independent scholarly and wider public discourses, and its embodiment in the design and use of systems. Selection power is regarded as produced by selection labor, with the nature of that labor changing with different historical conditions and concurrent information technologies. Selection labor can itself be decomposed into description and search labor. Selection labor and its decomposition into description and search labor will be treated in a subsequent article, in a further development of a labor theoretic approach to information retrieval.
Resumo:
Collisional effects can have strong influences on the population densities of excited states in gas discharges at elevated pressure. The knowledge of the pertinent collisional coefficient describing the depopulation of a specific level (quenching coefficient) is, therefore, important for plasma diagnostics and simulations. Phase resolved optical emission spectroscopy (PROES) applied to a capacitively coupled rf discharge excited with a frequency of 13.56 MHz in hydrogen allows the measurement of quenching coefficients for emitting states of various species, particularly of noble gases, with molecular hydrogen as a collision partner. Quenching coefficients can be determined subsequent to electron-impact excitation during the short field reversal phase within the sheath region from the time behavior of the fluorescence. The PROES technique based on electron-impact excitation is not limited â?? in contrast to laser techniques â?? by optical selection rules and the energy gap between the ground state and the upper level of the observed transition. Measurements of quenching coefficients and natural fluorescence lifetimes are presented for several helium (3 1S,4 1S,3 3S,3 3P,4 3S), neon (2p1 ,2p2 ,2p4 ,2p6), argon (3d2 ,3d4 ,3d18 and 3d3), and krypton (2p1 ,2p5) states as well as for some states of the triplet system of molecular hydrogen.
Resumo:
Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.
Resumo:
In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90alpha but also Hsp90beta. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90beta and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90beta and apoptosis.
Resumo:
Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.
Resumo:
In gas discharges at elevated pressure, radiation-less collisional de-excitation (quenching) has a strong influence on the population of excited states. The knowledge of quenching coefficients is therefore important for plasma diagnostics and simulations. A novel time-resolved optical emission spectroscopic (OES) technique allows the measurement of quenching coefficients for emission lines of various species, particularly of noble gases, with molecular hydrogen as collision partner. The technique exploits the short electron impact excitation during the field reversal phase within the sheath region of a hydrogen capacitively coupled RF discharge at 13.56 MHz. Quenching coefficients can be determined subsequent to this excitation from the effective lifetime of the fluorescence decay at various hydrogen pressures. The measured quenching coefficients agree very well with results obtained by means of laser excitation. The time-resolved OES technique based on electron impact excitation is not limited - in contrast to laser techniques - by optical selection rules and the energy gap between the ground state and the observed excited level.