6 resultados para orthogonal design
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this letter, we propose a lattice-based full diversity design for rate-one quasi-orthogonal space time block codes (QSTBC) to obtain an improved diversity product for eight transmit antennas where the information bits are mapped into 4-D lattice points instead of the common modulation constellations. Particularly, the diversity product of the proposed code is directly determined by the minimum Euclidean distance of the used lattice and can be improved by using the lattice packing. We show analytically and by using simulation results that the proposed code achieves a larger diversity product than the rate-one QSTBCs reported previously.
Resumo:
Recently, a single-symbol decodable transmit strategy based on preprocessing at the transmitter has been introduced to decouple the quasi-orthogonal space-time block codes (QOSTBC) with reduced complexity at the receiver [9]. Unfortunately, it does not achieve full diversity, thus suffering from significant performance loss. To tackle this problem, we propose a full diversity scheme with four transmit antennas in this letter. The proposed code is based on a class of restricted full-rank single-symbol decodable design (RFSDD) and has many similar characteristics as the coordinate interleaved orthogonal designs (CIODs), but with a lower peak-to-average ratio (PAR).
Resumo:
We analyze the effect of different pulse shaping filters on the orthogonal frequency division multiplexing (OFDM) based wireless local area network (LAN) systems in this paper. In particular, the performances of the square root raised cosine (RRC) pulses with different rolloff factors are evaluated and compared. This work provides some guidances on how to choose RRC pulses in practical WLAN systems, e.g., the selection of rolloff factor, truncation length, oversampling rate, quantization levels, etc.
Resumo:
Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.
Resumo:
This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, while training symbol resequencing protects the entire physical layer packet, but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to have a better performance in terms of search space, key rate and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study.