16 resultados para optical fibre

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of chemically etched fibre tips for use in optical scanning probe microscopy is addressed. For tips formed at a cleaved fibre end in the bulk of a buffered HF acid solution the morphological features (tip height, cone angle) are found to depend strongly on the temperature and etchant composition. The tip formation process is analysed and explained in terms of a simple model in which the only pertinent physical parameters are the fibre core diameter and etch rates of the fibre core and cladding. The etch rates are determined in separate experiments as a function of temperature (in the range 24-50 degreesC) for etchant solutions of de ionised water: 50% HF acid: 40% NH4F in the volume ratio 1 : 1 : X for X=2, 4 and 6, and used in the model to yield a correct description of the experimental tip cone angles. The model is successfully extended to the intriguing case of negative tip formation which initiates in a normal, positive tip structure. By contrast, tip formation in the meniscus region of a bare fibre/etchant/organic solvent system is found to be independent of etchant composition and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the reliability and thus the suitability of optical fibre strain sensors for surface strain measurement in concrete structures was investigated. Two different configurations of optical strain sensors were used each having different mountings making them suitable for different uses in various structures. Due to the very limited time available to install the sensors and take result, commercially packaged sensors were used. In the tests carried out each sensor was mounted onto a concrete beam which was then subjected to a range of known and calibrated loadings. The performance of the optical strain sensors thus evaluated was compared with the results of conventional techniques. This comparison allows for selecting the best performing combination of sensor/mounting, i.e. long-gauge sensor with mounts bolted to threaded rods glued into the concrete for use in future work in a field test where a limited time window was available for installation, testing and post-test demounting. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0–13.2 with an acceptable response rate of around 50 min, having shown a very good stability over a period of longer than 20 months thus far. The sensor has also demonstrated little cross-sensitivity to ionic strength (IS) and also excellent photostability through a series of laboratory tests. These features make this type of sensor potentially well suited for in situ long term monitoring of pH in concrete structures, to enhance structural monitoring in the civil engineering sector

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Special issue on Sensor Systems for Structural Health Monitoring Abstract—This study addresses the direct calibration of optical fiber strain sensors used for structural monitoring and is carried out in situ. The behavior of fiber-Bragg-grating-based sensor systems when attached to metal bars, in a manner representative of their use as reinforcement bars in structures, was examined and their response calibrated. To ensure the validity of the measurements,this was done using an extensometer with a further calibrationagainst the response of electrical resistance strain gauges, often conventionally used, for comparison. The results show a repeatable calibration generating a suitable geometric factor of extension to strain for these sensors, to enable accurate strain data to be obtained when the fiber-optic sensor system is in use in structural monitoring applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.