8 resultados para optical concealment depth
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We present new X-ray observations obtained with Chandra ACIS-S of the HD 189733 system, consisting of a K-type star orbited by a transiting Hot Jupiter and an M-type stellar companion. We report a detection of the planetary transit in soft X-rays with a significantly deeper transit depth than observed in the optical. The X-ray data favor a transit depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While we are able to exclude several possible stellar origins for this deep transit, additional observations will be necessary to fully exclude the possibility that coronal inhomogeneities influence the result. From the available data, we interpret the deep X-ray transit to be caused by a thin outer planetary atmosphere which is transparent at optical wavelengths, but dense enough to be opaque to X-rays. The X-ray radius appears to be larger than the radius observed at far-UV wavelengths, most likely due to high temperatures in the outer atmosphere at which hydrogen is mostly ionized. We furthermore detect the stellar companion HD 189733B in X-rays for the first time with an X-ray luminosity of log LX = 26.67 erg s-1. We show that the magnetic activity level of the companion is at odds with the activity level observed for the planet-hosting primary. The discrepancy may be caused by tidal interaction between the Hot Jupiter and its host star.
Resumo:
In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.
Resumo:
Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.
Resumo:
Many plain text information hiding techniques demand deep semantic processing, and so suffer in reliability. In contrast, syntactic processing is a more mature and reliable technology. Assuming a perfect parser, this paper evaluates a set of automated and reversible syntactic transforms that can hide information in plain text without changing the meaning or style of a document. A large representative collection of newspaper text is fed through a prototype system. In contrast to previous work, the output is subjected to human testing to verify that the text has not been significantly compromised by the information hiding procedure, yielding a success rate of 96% and bandwidth of 0.3 bits per sentence. © 2007 SPIE-IS&T.
Resumo:
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling. Figures 2, 3, Tables 3-10, and Appendices are available in electronic form at http://www.aanda.orgThe photometric tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A17
Resumo:
PURPOSE: To compare anterior segment parameters between eyes of Chinese and Caucasians using anterior segment optical coherence tomography and to evaluate the association between these parameters and anterior chamber angle width between the two ethnic groups. METHODS: 60 Chinese and 60 Caucasians, 30 with open angles and 30 with narrow angles (defined as Shaffer grade < or =2 in > or =3 quadrants during dark room gonioscopy) in each group, were consecutively enrolled. One eye of each subject was randomly selected for imaging in a completely darkened room. Measurements, including anterior chamber depth (ACD), scleral spur-to-scleral spur distance (anterior chamber width (ACW)), anterior chamber angle width, iris convexity and iris thickness, were compared between the groups. The associations between angle opening distance and biometric measurements were evaluated with univariate and multivariate regression analyses. RESULTS: There were no differences in age, axial length, anterior chamber angle measurements, pupil diameter and iris convexity between Chinese and Caucasians in both open-angle and narrow-angle groups. However, the ACD and ACW were smaller and the iris was thicker in Chinese. In the multivariate analysis, the ACD was the most influential biometric parameter for angle opening distance in both Chinese and Caucasians. After adjusting the effects of axial length, age and sex, ACD and ACW were significantly smaller in Chinese. CONCLUSIONS: Chinese eyes had smaller ACD, smaller ACW and greater iris thickness than Caucasians. ACD was the most influential parameter in determining the angle width in both ethnic groups.
Resumo:
PURPOSE: To evaluate the agreement between optical low-coherence reflectometry (OLCR) and anterior segment optical coherence tomography (AS-OCT) for biometry of the anterior segment. SETTING: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China. DESIGN: Evaluation of diagnostic technology. METHODS: A series of OLCR (Lenstar LS 900) and AS-OCT measurements of the anterior segment were taken for consecutive subjects aged 35 years and older in a population-based study. The differences and correlations between the 2 methods of ocular biometry were assessed. Agreement was calculated as the 95% limits of agreement (LoA). RESULTS: The mean age of the 776 subjects was 55.2 years ± 12.0 (SD); 54.6% were women. The mean central corneal thickness (CCT) was smaller with OLCR than with AS-OCT (537.84 ± 31.46 μm versus 559.39 ± 32.02 μm) as was anterior chamber depth (ACD) (2.60 ± 0.37 mm versus 2.72 ± 0.37 mm) and anterior chamber width (ACW) (11.76 ± 0.47 mm versus 12.04 ± 0.55 mm) (all P<.001). The 95% LoA between the 2 instruments were -44.80 to 1.71 μm for CCT, -0.17 to -0.06 mm for ACD, and -1.28 to 0.72 mm for ACW. CONCLUSION: Optical low-coherence reflectometry and AS-OCT yielded potentially interchangeable ACD measurements, while the CCT and ACW measurements acquired by the 2 devices showed clinically significant differences.