5 resultados para nutrient content
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
It has previously been shown that across different arsenic (As) soil environments, a decrease in grain selenium (Se), zinc (Zn), and nickel (Ni) concentrations is associated with an increase in grain As. In this study we aim to determine if there is a genetic element for this observation or if it is driven by the soil As environment. To determine the genetic and environmental effect on grain element composition, multielement analysis using ICP-MS was performed on rice grain from a range of rice cultivars grown in 4 different field sites (2 in Bangladesh and 2 in West Bengal). At all four sites a negative correlation was observed between grain As and grain Ni, while at three of the four sites a negative correlation was observed between grain As and grain Se and grain copper (Cu). For manganese, Ni, Cu, and Se there was also a significant genetic interaction with grain arsenic indicating some cultivars are more strongly affected by arsenic than others.
Resumo:
Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown.
Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified.
Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C.
Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.
Resumo:
Consumer studies and market reports show an increase in consumption of ready-to-eat (RTE) foods. Although conventional processing technologies can in most cases produce safe products, they can also lead to the degradation of nutritional compounds and negatively affect quality characteristics. Consumers strongly prefer food that is minimally processed with the maximum amount of health-promoting substances. Novel processing technologies as pre- or post-treatment decontamination methods or as substitutes of conventional technologies have the potential to produce foods that are safe, rich in nutrient content and with superior organoleptic properties. Combining novel with conventional processes can eliminate potential drawbacks of novel technologies. This review examines available scientific information and critically evaluates the suitability and efficiency of various novel thermal and nonthermal technologies in terms of microbial safety, quality as well as nutrient content on the production of RTE meals, meats and pumpable products.
Resumo:
Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral profile, there were no significant differences in functional groups of amides I and II, α helix, and β-sheet structure as well as their ratio between the two new lines, indicating no difference in protein structure makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results showed that microbial protein synthesis (MCP; 148 vs 171 g/kg DM) and rumen protein degraded balance (DPB; 108 vs 127 g/kg DM) were lower in the CS-Y line, but there were no differences in total truly digested protein in small intestine (DVE) and feed milk value (FMV) between the two lines. In conclusion, the new yellow line had different nutritional, chemical, and structural features compared to the black line. CS-Y provided better nutrient utilization and availability.