15 resultados para null cell

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the role of p53 and the signal transducer and activator of transcription 1 (STAT1) in regulating Fas-mediated apoptosis in response to chemotherapies used to treat colorectal cancer. We found that 5-fluorouracil (5-FU) and oxaliplatin only sensitized p53 wild-type (WT) colorectal cancer cell lines to Fas-mediated apoptosis. In contrast, irinotecan (CPT-11) and tomudex sensitized p53 WT, mutant, and null cells to Fas-mediated cell death. Furthermore, CPT-11 and tomudex, but not 5-FU or oxaliplatin, up-regulated Fas cell surface expression in a p53-independent manner. In addition, increased Fas cell surface expression in p53 mutant and null cell lines in response to CPT-11 and tomudex was accompanied by only a slight increase in total Fas mRNA and protein expression, suggesting that these agents trigger p53-independent trafficking of Fas to the plasma membrane. Treatment with CPT-11 or tomudex induced STAT1 phosphorylation (Ser727) in the p53-null HCT116 cell line but not the p53 WT cell line. Furthermore, STAT1-targeted small interfering RNA (siRNA) inhibited up-regulation of Fas cell surface expression in response to CPT-11 and tomudex in these cells. However, we found no evidence of altered Fas gene expression following siRNA-mediated down-regulation of STAT1 in drug-treated cells. This suggests that STAT1 regulates expression of gene(s) involved in cell surface trafficking of Fas in response to CPT-11 or tomudex. We conclude that CPT-11 and tomudex may be more effective than 5-FU and oxaliplatin in the treatment of p53 mutant colorectal cancer tumors by sensitizing them to Fas-mediated apoptosis in a STAT1-dependent manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Archipelago (AGO, also known as hCdc4, Fbw7, or Sel-10) is an F-box containing component of the SCF complex implicated in the ubiquitination and proteolysis of cyclin E and c-Myc, and found to be mutated in 16% of endometrial carcinomas. We have previously reported somatic mutations in AGO in 3/10 ovarian cancer cell lines, but the frequency of such mutations in primary ovarian cancer is unknown.

Methods: The coding sequence of AGO was analyzed in 95 primary sporadic ovarian tumors and 16 cases of familial ovarian cancer, and correlated with levels of cyclin E and c-Myc protein expression. Constructs encoding mutations in AGO were transfected into an AGO-null cell line to directly test their ability to regulate cyclin E and c-Myc levels.

Results: Mutations were present in only 2 of 95 sporadic cases: a premature stop within the WD domain (471 Ter) and a missense change near the F-box (S245T). Both primary tumor specimens containing these mutations showed high levels of cyclin E and c-Myc, but reconstitution of an AGO-null cell line with constructs encoding these mutations showed 471 Ter to be inactive in regulating endogenous cyclin E and c-Myc levels, while the S245T mutant was indistinguishable from wild-type. No germ-line mutations were found in familial cases of ovarian cancer.

Conclusion: Somatic AGO mutations are infrequent in primary ovarian cancers and are unlikely to contribute to familial ovarian cancer. Reconstitution experiments, rather than measuring tumor levels of cyclin E and c-Myc, provide an effective approach to determine the functional significance of AGO mutations identified in human cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA is lethal. Importantly, uracil misincorporation is a mechanism of cytotoxicity induced by fluoropyrimidine chemotherapeutic agents including 5-fluorouracil (5-FU) and elevated expression of dUTPase is negatively correlated with clinical response to 5-FU-therapy. In this study we performed the first functional characterization of the dUTPase promoter and demonstrate a role for E2F-1 and Sp1 in driving dUTPase expression. We establish a direct role for both mutant and wild-type forms of p53 in modulating dUTPase promoter activity. Treatment of HCT116 p53(+/+) cells with the DNA-damaging agent oxaliplatin induced a p53-dependent transcriptional downregulation of dUTPase not observed in the isogenic null cell line. Oxaliplatin treatment induced enrichment of p53 at the dUTPase promoter with a concomitant reduction in Sp1. The suppression of dUTPase by oxaliplatin promoted increased levels of dUTP that was enhanced by subsequent addition of fluoropyrimidines. The novel observation that oxaliplatin downregulates dUTPase expression may provide a mechanistic basis contributing to the synergy observed between 5-FU and oxaliplatin in the clinic. Furthermore, these studies provide the first evidence of a direct transcriptional link between the essential enzyme dUTPase and the tumor suppressor p53.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-FLIP inhibits caspase 8 activation and apoptosis mediated by death receptors such as Fas and DR5. We studied the effect of c-FLIP on the apoptotic response to chemotherapies used in colorectal cancer (CRC) (5-fluorouracil, oxaliplatin and irinotecan). Simultaneous downregulation of both c-FLIP splice forms c-FLIP(L) and c-FLIP(S) with siRNA synergistically enhanced chemotherapy-induced apoptosis in p53 wild-type (HCT116p53(+/+), RKO), null (HCT116p53(-/-)) and mutant (H630) CRC cell lines. Furthermore, overexpression of c-FLIP(L), but not c-FLIP(S), potently inhibited apoptosis induced by chemotherapy in HCT116p53(+/+) cells, suggesting that c-FLIP(L) was the more important splice form in mediating chemoresistance. In support of this, siRNA specifically targeted against c-FLIP(L) synergistically enhanced chemotherapy-induced apoptosis in a manner similar to the siRNA targeted against both splice forms. Inhibition of caspase 8 blocked the enhanced apoptosis induced by c-FLIP-targeted (FT) siRNA and chemotherapy. Furthermore, we found that downregulating cell surface DR5, but not Fas, also inhibited apoptosis induced by FT siRNA and chemotherapy. Interestingly, these effects were not dependent on activation of DR5 by its ligand TRAIL. These results indicate that c-FLIP inhibits TRAIL-independent, DR5- and caspase 8-dependent apoptosis in response to chemotherapy in CRC cells. Moreover, targeting c-FLIP in combination with existing chemotherapies may have therapeutic potential for the treatment of CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-FLIP is an inhibitor of apoptosis mediated by the death receptors Fas, DR4 and DR5 and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. We found that siRNA-mediated silencing of c-FLIP induced spontaneous apoptosis in a panel of p53 wild-type, mutant and null colorectal cancer (CRC) cell lines and that this apoptosis was mediated by caspase 8 and FADD. Further analyses indicated the involvement of DR5 and/or Fas (but not DR4) in regulating apoptosis induced by c-FLIP siRNA. Interestingly, these effects were not dependent on activation of DR5 or Fas by their ligands TRAIL and FasL. Overexpression of c-FLIPL, but not c-FLIPS, significantly decreased spontaneous and chemotherapy-induced apoptosis in HCT116 cells. Further analyses with splice form-specific siRNAs indicated that c-FLIPL was the more important splice form in regulating apoptosis in HCT116, H630 and LoVo cells, although specific knock down of c-FLIPS induced more apoptosis in the HT29 cell line. Importantly, intra-tumoral delivery of c-FLIP-targeted siRNA duplexes induced apoptosis and inhibited the growth of HCT116 xenografts in Balb/c SCID mice. In addition, the growth of c-FLIPL overexpressing CRC xenografts was more rapid than control xenografts, an effect that was significantly enhanced in the presence of chemotherapy. These results indicate that c-FLIP inhibits spontaneous death ligand-independent, death receptor-mediated apoptosis in CRC cells and that targeting c-FLIP may have therapeutic potential for the treatment of colorectal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.

Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.

Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.

Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topoisomerase I inhibitor irinotecan is used to treat advanced colorectal cancer and has been shown to have p53-independent anticancer activity. The aim of this study was to identify the p53-independent signaling mechanisms activated by irinotecan. Transcriptional profiling of isogenic HCT116 p53 wild-type and p53 null cells was carried out following treatment with the active metabolite of irinotecan, SN38. Unsupervised analysis methods showed that p53 status had a highly significant impact on gene expression changes in response to SN38. Pathway analysis indicated that pathways involved in cell motility [adherens junction, focal adhesion, mitogen-activated protein kinase (MAPK), and regulation of the actin cytoskeleton] were significantly activated in p53 null cells, but not p53 wild-type cells, following SN38 treatment. In functional assays, SN38 treatment increased the migratory potential of p53 null and p53-mutant colorectal cancer cell lines, but not p53 wild-type lines. Moreover, p53 null SN38-resistant cells were found to migrate at a faster rate than parental drug-sensitive p53 null cells, whereas p53 wild-type SN38-resistant cells failed to migrate. Notably, cotreatment with inhibitors of the MAPK pathway inhibited the increased migration observed following SN38 treatment in p53 null and p53-mutant cells. Thus, in the absence of wild-type p53, SN38 promotes migration of colorectal cancer cells, and inhibiting MAPK blocks this potentially prometastatic adaptive response to this anticancer drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism. © 2012 Macmillan Publishers Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD).

Methods: RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated.

Results: RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice.

Conclusions: RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.