28 resultados para neutron powder diffraction
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The system TlCo2Se2-xSx has been thoroughly investigated by neutron powder diffraction and SQUID magnetometry. TlCo2Se2-xSx is a layered tetragonal structure containing atomic cobalt layers separated by a distance of 6.4 angstrom in the sulphide and 6.8 angstrom in the selenide. The solid solubility of isovalent selenium and sulphur atoms in the structure makes it possible to continuously vary the interlayer distance and thereby tune the magnetic coupling between the Co-layers. At low temperatures, the Co-atoms are ferromagnetically ordered within the layers and magnetic moments lie in the ab-plane. However, these Co-moments form a helical magnetic structure that prevails for 0 <= x <= 1.5 with a gradual decrease of the angle between adjacent Co-layers from 122 degrees to 39 degrees. For x >= 1.75, a collinear ferromagnetic structure is stable. The relationship between the coupling angle and the Co-interlayer separation shows an almost linear behaviour. The helical phase contains no net spontaneous magnetic moment up to TlCo2SeS, where a small net magnetic moment appears that increases until the ferromagnetic structure is found for 1.75 <= x <= 2.0. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new compound, Mn8Pd15Si7, is reported to crystallize in a face centered cubic unit cell of dimension a = 12.0141(2) angstrom, space groupFm (3) over barm, and can thus be classified as a G-phase. The crystal structure was studied by single crystal X-ray diffraction, X-ray and neutron powder diffraction and electron diffraction. A filled Mg6Cu16Si7 type structure was found, corresponding to the Sc11Ir4 type structure. The magnetic properties were investigated by magnetization measurements and Reverse Monte Carlo modeling of low temperature magnetic short-range order (SRO). Dominating near neighbor antiferromagnetic correlations were found between the Mn atoms and geometric frustration in combination with random magnetic interactions via metal sites with partial Mn occupancy were suggested to hinder formation of long-range magnetic order.
Resumo:
A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space group Pnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the It and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8 mu(B)/atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.21 mu(B) for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.
Resumo:
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is 0.65(2) mu(B) at 10 K and is in very good agreement with the value, mu(sat) = 0.65(1) mu(B) at 10 K, inferred from the magnetic hysteresis curve. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.
Resumo:
Pressure-induced structural modifications in scolecite were studied by means of in situ synchrotron X-ray powder diffraction and density functional computations. The experimental cell parameters were refined up to 8.5 GPa. Discontinuities in the slope of the unit-cell parameters vs. pressure dependence were observed; as a consequence, an increase in the slope of the linear pressure-volume dependence is observed at about 6 GPa, suggesting an enhanced compressibility at higher pressures. Weakening and broadening of the diffraction peaks reveals increasing structural disorder with pressure, preventing refinement of the lattice parameters above 8.5 GPa. Diffraction patterns collected during decompression show that the disorder is irreversible. Atomic coordinates within unit cells of different dimensions were determined by means of Car-Parrinello simulations. The discontinuous rise in compressibility at about 6 GPa is reproduced by the computation, allowing us to attribute it to re-organization of the hydrogen bonding network, with the formation of water dimers. Moreover we found that, with increasing pressure, the tetrahedral chains parallel to c rotate along their elongation axis and display an increasing twisting along a direction perpendicular to c. At the same time, we observed the compression of the channels. We discuss the modification of the Ca polyhedra under pressure, and the increase in coordination number (from 4 to 5) of one of the two Al atoms, resulting from the approach of a water molecule. We speculate that this last transformation triggers the irreversible disordering of the system.
Resumo:
White polycrystalline mercurous azide, Hg-2(N-3)(2), is obtained by combining aqueous solutions of NaN3 and Hg-2(NO3)(2).2H(2)O (made viscuous by addition of tetramethoxysilane and heating at 65 degreesC). The crystal structure was solved and refined from X-ray powder diffraction data (monoclinic, P2(1)/n, a = 596.07(2) pm, b = 1259.07(4) pm, c = 357.95(1) pm, beta 103.253(2)degrees, Z = 2, R-B = 0.0519). Solid Hg-2(N-3)(2) contains, essentially, molecules of that composition with Hg-Hg distances of 254.4(3) pm, Hg-N distances of 218(2) pm and Hg-Hg-N angles of 178.7(6)degrees. Weak intermolecular interactions with Hg-N distances starting at 280(3) pm lead to a three-dimensional structure.
Resumo:
Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The electrochemistry of HgCl(2) and [Hg(NTf(2))(2)] ([NTf(2)](-) = bis-{(trifluoromethyl)sulfonyl}imide) has been studied in room temperature ionic liquids. It has been found that the cyclic voltammetry of Hg(II) is strongly dependent on a number of factors (e.g., concentration, anions present in the mixture, and nature of the working electrode) and differs from that found in other media. Depending on conditions, the cyclic voltammetry of Hg(II) can give rise to one, two, or four reduction peaks, whereas the reverse oxidative scans show two to four peaks. Diffuse reflectance UV-vis spectroscopy and X-ray powder diffraction have been used to aid the assignment of the voltammetric waves.
Resumo:
A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.
Resumo:
This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.
The geochemical data, and particularly the immobile elements distribution and REE patterns, show that the Balkouin laterite is the product of an in situ lateritization process that involved a strong depletion of the more soluble elements (K, Mg, Ca, Na, Rb, Sr and Ba) and an enrichment in Fe; Si was also removed, particularly in the uppermost horizons. All along the profile the change in composition is coupled with important changes in mineralogy. In particular, the saprolite is characterized by occurrence of abundant albitic plagioclase, quartz and nontronite; kaolinite is apparently absent. The transition to the overlying lateritic profile marks the breakdown of plagioclase and nontronite, thus allowing kaolinite to become one of the major components upwards, together with goethite and quartz. The upper part of the profile is strongly enriched in hematite (+ kaolinite). Ti oxides (at least in part as anatase) and apatite are typical accessory phases, while free aluminum hydroxides are notably absent. Mass change calculations emphasize the extent of the mass loss, which exceeds 50 wt% (and often 70 wt%) for almost all horizons; only Fe was significantly concentrated in the residual system.
The geochemical and mineralogical features suggest that the lateritic profile is the product of a continuous process that gradually developed from the bedrock upwards, in agreement with the Schellmann classic genetic model. The laterite formation must have occurred at low pH (? 4.5) and high Eh (? 0.4) values, i.e., under acidic and oxidizing environments, which allowed strongly selective leaching conditions. The lack of gibbsite and bohemite is in agreement with the compositional data: the occurrence of quartz (± amorphous silica) all along the profile was an inhibiting factor for the formation of free aluminum hydroxides.
Resumo:
Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD.