4 resultados para natural classification
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
PURPOSE. To describe and classify patterns of abnormal fundus autofluorescence (FAF) in eyes with early nonexudative age-related macular disease (AMD). METHODS. FAF images were recorded in eyes with early AMD by confocal scanning laser ophthalmoscopy (cSLO) with excitation at 488 nm (argon or OPSL laser) and emission above 500 or 521 nm (barrier filter). A standardized protocol for image acquisition and generation of mean images after automated alignment was applied, and routine fundus photographs were obtained. FAF images were classified by two independent observers. The ? statistic was applied to assess intra- and interobserver variability. RESULTS. Alterations in FAF were classified into eight phenotypic patterns including normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Areas with abnormal increased or decreased FAF signals may or may not have corresponded to funduscopically visible alterations. For intraobserver variability, ? of observer I was 0.80 (95% confidence interval [CI]0.71-0.89) and of observer II, 0.74. (95% CI, 0.64-0.84). For interobserver variability, ? was 0.77 (95% CI, 0.67-0.87). CONCLUSIONS. Various phenotypic patterns of abnormal FAF can be identified with cSLO imaging. Distinct patterns may reflect heterogeneity at a cellular and molecular level in contrast to a nonspecific aging process. The results indicate that the classification system yields a relatively high degree of intra- and interobserver agreement. It may be applicable for determination of novel prognostic determinants in longitudinal natural history studies, for identification of genetic risk factors, and for monitoring of future therapeutic interventions to slow the progression of early AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Background: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner.
Discussion: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research.
Summary: Here we argue that this imbalance, favoring 'wet lab-based activities', will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization.
Resumo:
Development of green composite from natural fibers has gained increasing interests due to the environmental and sustainable benefits when compared with petroleum based non-degradable materials. However, a big challenge of green composites is the diversity of fiber sources, because of the large variation in the properties and characteristics of the lignocellulosic renewable resource. The lignocellulosic fibers/natural fibers used to reinforce green composites are reviewed in this chapter. A classification of fiber types and sources, the properties of various natural fibers, including structure, composition, physical and chemical properties are focused; followed by the impacts of natural fibers on composite properties, with identification of the main pathways from the natural fibers to the green composite. Furthermore, the main challenges and future trend of natural fibers are highlighted.