10 resultados para nacelle

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the implementation of Menter's gamma-Re-theta Transition Model within the CFX12 solver for turbulent transition prediction on a natural laminar flow nacelle. Some challenges associated with this type of modeling have been identified. The computational fluid dynamics transitional flow simulation results are presented for a series of cruise cases with freestream Mach numbers ranging from 0.8 to 0.88, angles of attack from 2 to 0 degrees, and mass flow ratios from 0.60 to 0.75. These were validated with a series of wind-tunnel tests on the nacelle by comparing the predicted and experimental surface pressure distributions and transition locations. A selection of the validation cases are presented in this paper. In all cases, computational fluid dynamics simulations agreed reasonably well with the experiments. The results indicate that Menter's gamma-Re-theta Transition Model is capable of predicting laminar boundary-layer transition to turbulence on a nacelle. Nonetheless, some limitations exist in both the Menter's gamma-Re-theta Transition Model and in the implementation of the computational fluid dynamics model. The implementation of a more comprehensive experimental correlation in Menter's gamma-Re-theta Transition Model, preferably the ones from nacelle experiments, including the effects of compressibility and streamline curvature, is necessary for an accurate transitional flow simulation on a nacelle. In addition, improvements to the computational fluid dynamics model are also suggested, including the consideration of varying distributed surface roughness and an appropriate empirical correction derived from nacelle experimental transition location data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of manufacturing tolerance on direct operating cost (DOC) is extrapolated from an engine nacelle to be representative of an entire aircraft body. Initial manufacturing tolerance data was obtained from the shop floor at Bombardier Aerospace Shorts, Belfast while the corresponding costs were calculated according to various recurring elements such as basic labour and overtime labour, rework, concessions, and redeployment; along with the non-recurrent costs due to tooling and machinery, etc. The relation of tolerance to cost was modelled statistically so that the cost impact of tolerance change could be ascertained. It was shown that a relatively small relaxation in the assembly and fabrication tolerances of the wetted surfaces resulted in reduced costs of production that lowered aircraft DOC, as the incurred drag penalty was predicted and taken into account during the optimisation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Up until now, aircraft surface smoothness requirements have been aerodynamically driven with tighter manufacturing tolerance to minimize drag, that is, the tighter the tolerance, the higher is the assembly cost in the process of manufacture. In the current status of commercial transport aircraft operation, it can be seen that the unit cost contributes to the aircraft direct operating cost considerably more than the contribution made by the cost of block fuel consumed for the mission profile. The need for a customer-driven design strategy to reduce direct operating cost by reducing aircraft cost through manufacturing tolerance relaxation at the wetted surface without unduly penalizing parasite drag is investigated. To investigate this, a preliminary study has been conducted at 11 key manufacturing features on the surface assembly of an isolated nacelle. In spite of differences in parts design and manufacture, the investigated areas associated with the assembly of nacelles are typical of generic patterns in the assembly of other components of aircraft. The study is to be followed up by similar studies extended to lifting surfaces and fuselage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital avionics systems are increasingly under threat from external electromagnetic interference (EMI). The same avionics systems require a thermal cooling mechanism and one method of providing this is to mount an air vent on the body of the aircraft. For the first time, a nacelle-mounted air vent that may expose the flight critical full authority digital engine controller (FADEC) to high intensity radiated fields (HIRF) is examined. The reflection/transmission characteristics of the vent are reported and the current shielding method employed is shown to provide a low shielding level (5 dB at 18 GHz). A new design has been proposed, providing over 100 dB of attenuation at 18 GHz. To the authors' knowledge this is the first time this shielding method has been applied to aircraft air vents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper is primarily concerned with the modelling of aircraft manufacturing cost. The aim is to establish an integrated life cycle balanced design process through a systems engineering approach to interdisciplinary analysis and control. The cost modelling is achieved using the genetic causal approach that enforces product family categorisation and the subsequent generation of causal relationships between deterministic cost components and their design source. This utilises causal parametric cost drivers and the definition of the physical architecture from the Work Breakdown Structure (WBS) to identify product families. The paper presents applications to the overall aircraft design with a particular focus on the fuselage as a subsystem of the aircraft, including fuselage panels and localised detail, as well as engine nacelles. The higher level application to aircraft requirements and functional analysis is investigated and verified relative to life cycle design issues for the relationship between acquisition cost and Direct Operational Cost (DOC), for a range of both metal and composite subsystems. Maintenance is considered in some detail as an important contributor to DOC and life cycle cost. The lower level application to aircraft physical architecture is investigated and verified for the WBS of an engine nacelle, including a sequential build stage investigation of the materials, fabrication and assembly costs. The studies are then extended by investigating the acquisition cost of aircraft fuselages, including the recurring unit cost and the non-recurring design cost of the airframe sub-system. The systems costing methodology is facilitated by the genetic causal cost modeling technique as the latter is highly generic, interdisciplinary, flexible, multilevel and recursive in nature, and can be applied at the various analysis levels required of systems engineering. Therefore, the main contribution of paper is a methodology for applying systems engineering costing, supported by the genetic causal cost modeling approach, whether at a requirements, functional or physical level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variation of the bypass nozzle exit area enables optimization of the turbofan engine operating cycle over a wider range of operational conditions resulting in improved thrust and/or fuel consumption. Two mechanisms for varying the nozzle area have been investigated. The first uses an array of chevrons which when closed, form a full body of revolution and when warped/curved, increase the exit area while forming a serrated trailing edge. The second technique incorporates an axially translating section of the nacelle shroud and uses the change in the nozzle boat-tail radial location with the axial location as a means to vary the nozzle exit area. To analyse the effects on a typical rotor/stator stage, computational fluid dynamics simulations of the NASA Rotor 67, Stator 67A stage integrated into a custom-built nacelle were performed. Nozzles with 8, 12, and 16 chevrons were simulated to evaluate the impact of the variation in geometry upon the nacelle wake and local forces. Gross thrust of the nacelle and the turbulent kinetic energy (TKE) variation through the wake is compared. The chevron nozzle attains a nearly 2 per cent maximum thrust improvement over the translating nozzle technique. The chevron nozzle also has significantly lower (nearly 8 per cent) peak TKE levels in the jet plume.