412 resultados para monopole antennas
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this paper, we show how a self-tracking antenna array constructed using gimel /4 monopoles can be constructed, which is capable of receiving with gain over an entire 360 degrees azimuthal cut. It is also shown how the self-tacking receive unit can be used in conjunction with a self-phased transmitter so that self-steered spatially selective receive and transmit functions ran be formed simultaneously. The resulting array is capable of maintaining spatially selective receive and transmit functions to a roaming target without prior knowledge of its physical location.
Resumo:
In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.
Resumo:
Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.
Resumo:
We show that by introducing a gap at the center of the helical sections (where the current is minimum) of a lambda/2 quadrifilar helix antenna (QHA) and varying the axial length and radial gap between the overlapping volutes, the antenna gives a 28% impedance bandwidth which is nine times the bandwidth of a conventional QHA. A 16% bandwidth with a front to back ratio of >= 14 dB is achievable with 5-14% reduction in the size of the QHA. The structure can yield a monopole radiation pattern suitable for terrestrial applications or a hemispherical pattern suitable for satellite use. The simulation results are validated by measurements at L-band.
Resumo:
The bandwidth of a resonant quadrifilar helix antenna (QHA) is shown to be strongly dependent on the design of the feed network. In this paper, we compare the impedance and radiation-pattern performance of two QHAs driven by different feed arrangements. A qualitative explanation for the difference in the behaviour of the antenna is given by observing the amplitude and phase distribution of the current in the helices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We present a new circuit-model approach which can be used to compute the mutual impedance between two dipoles fed at the same feed point. The validity of the method is confirmed by comparison with mutual impedance values obtained when the dipoles are individually excited and orientated at angles between 0degrees and 90degrees. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The reflection phase response of a two-layer array of orthogonally oriented concentric split rings is presented. Splitting the ring elements suppresses the interlayer coupling and produces polarisation sensitive scattering. Simulated and measured results at X-band demonstrate that these proper-ties enable the reflection phase coefficients of a reflect-array to be independently optimised at two different frequencies.
Resumo:
A simple and original mechanism to control the polarisation of uniform hybrid waveguide-planar leaky-wave antennas is proposed. The operation is based on introducing simple modifications of the planar dimensions of the structure cross-section, which is shown to control the horizontal and vertical components of the radiated fields. The proposed antenna dispenses with the need for periodic elements, commonly used in flexible polarised leaky-wave antennas, and therefore significantly reduces the design complexity. Parametric curves have been obtained to assist in the simple and efficient design of the proposed antenna. The novel mechanism is illustrated by means of several antenna prototypes operating at 5.7 GHz, producing linear, elliptical and circular polarisations. Commercial three-dimensional Finite Element Method has been used for the simulations, and the results are validated with experimental testing.[br].