29 resultados para monitoring design
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.
Resumo:
This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.
Resumo:
While WiFi monitoring networks have been deployed in previous research, to date none have assessed live network data from an open access, public environment. In this paper we describe the construction of a replicable, independent WLAN monitoring system and address some of the challenges in analysing the resultant traffic. Analysis of traffic from the system demonstrates that basic traffic information from open-access networks varies over time (temporal inconsistency). The results also show that arbitrary selection of Request-Reply intervals can have a significant effect on Probe and Association frame exchange calculations, which can impact on the ability to detect flooding attacks.
Resumo:
A hypnotic induction technique was used to facilitate direct observation of multiple tics in a typically developing teenager in a home setting. A comprehensive habit reversal program then was implemented, including awareness training, competing response training, relaxation training, self-monitoring, social support and contingency management. Duration of relaxation was then self-monitored using a changing criterion design. The procedure eliminated multiple tics and achieved long-term maintenance of treatment gains. Implications for assessing and treating tics are discussed.
Resumo:
Aim. This paper is a report of a study to describe how treatment fidelity is being enhanced and monitored, using a model from the National Institutes of Health Behavior Change Consortium. Background. The objective of treatment fidelity is to minimize errors in interpreting research trial outcomes, and to ascribe those outcomes directly to the intervention at hand. Treatment fidelity procedures are included in trials of complex interventions to account for inferences made from study outcomes. Monitoring treatment fidelity can help improve study design, maximize reliability of results, increase statistical power, determine whether theory-based interventions are responsible for observed changes, and inform the research dissemination process. Methods. Treatment fidelity recommendations from the Behavior Change Consortium were applied to the SPHERE study (Secondary Prevention of Heart DiseasE in GeneRal PracticE), a randomized controlled trial of a complex intervention. Procedures to enhance and monitor intervention implementation included standardizing training sessions, observing intervention consultations, structuring patient recall systems, and using written practice and patient care plans. The research nurse plays an important role in monitoring intervention implementation. Findings. Several methods of applying treatment fidelity procedures to monitoring interventions are possible. The procedure used may be determined by availability of appropriate personnel, fiscal constraints, or time limits. Complex interventions are not straightforward and necessitate a monitoring process at trial stage. Conclusion. The Behavior Change Consortium’s model of treatment fidelity is useful for structuring a system to monitor the implementation of a complex intervention, and helps to increase the reliability and validity of evaluation findings.
Resumo:
In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.
Resumo:
There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.
Resumo:
We extend the contingent valuation (CV) method to test three differing conceptions of individuals' preferences as either (i) a-priori well-formed or readily divined and revealed through a single dichotomous choice question (as per the NOAA CV guidelines [K. Arrow, R. Solow, P.R. Portney, E.E. Learner, R. Radner, H. Schuman, Report of the NOAA panel on contingent valuation, Fed. Reg. 58 (1993) 4601-4614]); (ii) learned or 'discovered' through a process of repetition and experience [J.A. List, Does market experience eliminate market anomalies? Q. J. Econ. (2003) 41-72; C.R. Plott, Rational individual behaviour in markets and social choice processes: the discovered preference hypothesis, in: K. Arrow, E. Colombatto, M. Perleman, C. Schmidt (Eds.), Rational Foundations of Economic Behaviour, Macmillan, London, St. Martin's, New York, 1996, pp. 225-250]; (iii) internally coherent but strongly influenced by some initial arbitrary anchor [D. Ariely, G. Loewenstein, D. Prelec, 'Coherent arbitrariness': stable demand curves without stable preferences, Q. J. Econ. 118(l) (2003) 73-105]. Findings reject both the first and last of these conceptions in favour of a model in which preferences converge towards standard expectations through a process of repetition and learning. In doing so, we show that such a 'learning design CV method overturns the 'stylised facts' of bias and anchoring within the double bound dichotomous choice elicitation format. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES: To determine the extent to which the use of a clinical informatics tool that implements prospective monitoring plans reduces the incidence of potential delirium, falls, hospitalizations potentially due to adverse drug events, and mortality.
DESIGN: Randomized cluster trial.
SETTING: Twenty-five nursing homes serviced by two long-term care pharmacies.
PARTICIPANTS: Residents living in nursing homes during 2003 (1,711 in 12 intervention; 1,491 in 13 usual care) and 2004 (1,769 in 12 intervention; 1,552 in 13 usual care).
INTERVENTION: The pharmacy automatically generated Geriatric Risk Assessment MedGuide (GRAM) reports and automated monitoring plans for falls and delirium within 24 hours of admission or as part of the normal time frame of federally mandated drug regimen review.
MEASUREMENTS: Incidence of potential delirium, falls, hospitalizations potentially due to adverse drug events, and mortality.
RESULTS: GRAM triggered monitoring plans for 491 residents. Newly admitted residents in the intervention homes experienced a lower rate of potential delirium onset than those in usual care homes (adjusted hazard ratio (HR)=0.42, 95% confidence interval (CI)=0.35–0.52), overall hospitalization (adjusted HR=0.89, 95% CI=0.72–1.09), and mortality (adjusted HR=0.88, 95% CI=0.66–1.16). In longer stay residents, the effects of the intervention were attenuated, and all estimates included unity.
CONCLUSION: Using health information technology in long-term care pharmacies to identify residents who might benefit from the implementation of prospective medication monitoring care plans when complex medication regimens carry potential risks for falls and delirium may reduce adverse effects associated with appropriate medication use.
Resumo:
Quantifying nutrient and sediment loads in catchments is dif?cult owing to diffuse controls related to storm hydrology. Coarse sampling and interpolation methods are prone to very high uncertainties due to under-representation of high discharge, short duration events. Additionally, important low-?ow processes such as diurnal signals linked to point source impacts are missed. Here we demonstrate a solution based on a time-integrated approach to sampling with a standard 24 bottle autosampler con?gured to take a sample every 7 h over a week according to a Plynlimon design. This is evaluated with a number of other sampling strategies using a two-year dataset of sub-hourly discharge and phosphorus concentration data. The 24/7 solution is shown to be among the least uncertain in estimating load (inter-quartile range: 96% to 110% of actual load in year 1 and 97% to 104% in year 2) due to the increased frequency raising the probability of sampling storm events and point source signals. The 24/7 solution would appear to be most parsimonious in terms of data coverage and certainty, process signal representation, potential laboratory commitment, technology requirements and the ability to be widely deployed in complex catchments.
Resumo:
This paper presents the design and implementation of a novel optical fiber temperature compensated relative humidity (RH) sensor device, based on fiber Bragg gratings (FBGs) and developed specifically for monitoring water ingress leading to the deterioration of building stone. The performance of the sensor thus created, together with that of conventional sensors, was first assessed in the laboratory where they were characterized under experimental conditions of controlled wetting and drying cycles of limestone blocks, before being employed “in-the-field” to monitor actual building stone in a specially built wall. Although a new construction, this was built specifically using conservation methods similar to those employed in past centuries, to allow an accurate simulation of processes occurring with wetting and drying in the historic walls in the University of Oxford.
Resumo:
A major concern in stiffener run-out regions, where the stiffener is terminated due to a cut-out, intersecting rib, or some other structural feature which interrupts the load path, is the relatively weak skin–stiffener interface in the absence of mechanical fasteners. More damage tolerant stiffener run-outs are clearly required and these are investigated in this paper. Using a parametric finite element analysis, the run-out region was optimised for stable debonding crack growth. The modified run-out, as well as a baseline configuration, were manufactured and tested. Damage initiation and propagation was investigated in detail using state-of-the-art monitoring equipment including Acoustic Emission and Digital Image Correlation. As expected, the baseline configuration failed catastrophically. The modified run-out showed improved crack-growth stability, but subsequent delamination failure in the stiffener promptly led to catastrophic failure.