137 resultados para modified kaolins

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that chromogranin A (CgA), a protein of neuroendocrine cell secretory granules, may be a precursor of biologically active peptides, rests on observed activities of peptide fragments largely produced by exogenous protease digestion of the bovine protein. Here we have adopted a modified proteomic strategy to isolate and characterise human CgA-derived peptides produced by endogenous prohormone convertases. Initial focus was on an insulinoma as previous studies have shown that CgA is rapidly processed in pancreatic beta cells and that tumours arising from these express appropriate prohormone convertases. Eleven novel peptides were identified arising from processing at both monobasic and dibasic sites and processing was most evident in the C-terminal domain of the protein. Some of these peptides were identified in endocrine tumours, such as mid-gut carcinoid and phaeochromocytoma, which arise from endocrine cells of different phenotype and in different anatomical sites. Two of the most interesting peptides, GR-44 and ER-37, representing the C-terminal region of CgA, were found to be amidated. These data would imply that the intact protein is C-terminally amidated and that these peptides are probably biologically active. The spectrum of novel CgA-derived peptides, described in the present study, should provide a basis for biological evaluation of authentic entities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. Current design and analysis methods for aircraft panels have been developed and validated for riveted fabrication. For welded panels, considering the buckling collapse design philosophy of aircraft stiffened panels, strength prediction methods considering welding process effects for both local-buckling and post-buckling behaviours must be developed and validated. This article reports on the work undertaken to develop analysis methods for the crippling failure of stiffened panels fabricated using laser beam and friction stir welding. The work assesses modifications to conventional analysis methods and finite-element analysis methods for strength prediction. The analysis work is validated experimentally with welded single stiffener crippling specimens. The experimental programme has demonstrated the potential static strength of laser beam and friction stir welded sheet-stiffener joints for post-buckling panel applications. The work undertaken has demonstrated that the crippling behaviour of welded stiffened panels may be analysed considering standard-buckling behaviour. However, stiffened panel buckling analysis procedures must be altered to account for the weld joint geometry and process altered material properties. © IMechE 2006.