4 resultados para minimum water status of leaf
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
1.Margaritifera margaritifera populations are declining throughout its range, including Ireland, despite legislation designed to protect freshwater pearl mussels and their habitat. A survey of freshwater 2. pearl mussels was carried out on rivers in County Donegal, north-west Ireland, to determine the current distribution, size and density of M. margaritifera populations, as well as to identify potential threats to mussels there. 3. The survey revealed the freshwater pearl mussel to be widespread, particularly in the western half of the county. However, densities of mussels at most sites are low, with just two sites having mussel densities of over 5?m-2. Furthermore, the species appears to be absent from a number of sites from which it had been previously recorded. 4. According to the literature, there is a long history of pearl fishing in Co. Donegal and neighbouring counties. Evidence from heaps of shells found on the river bed and banks at several sites and recent anecdotal reports from local people suggest pearl fishing is being practised on all rivers investigated during the present study. The main conservation requirements for 5. M. margaritifera populations in Donegal are to maintain water quality at its present high standard and, as pearl fishing appears to be a widespread and immediate threat to the remaining mussel populations, to enforce existing legislation designed to protect M. margaritifera.
Resumo:
The management of water resources in Ireland prior to the Water Framework Directive (WFD) has focussed on surface water and groundwater as separate entities. A critical element to the successful implementation of the
WFD is to improve our understanding of the interaction between the two and flow mechanisms by which groundwaters discharge to surface waters. An improved understanding of the contribution of groundwater to surface water is required for the classification of groundwater body status and the determination of groundwater quality thresholds. The results of the study will also have a wider application to many areas of the WFD.
A subcommittee of the WFD Groundwater Working Group (GWWG) has been formed to develop a methodology to estimate the groundwater contribution to Irish Rivers. The group has selected a number of analytical techniques to quantify components of stream flow in an Irish context (Master Recession Curve, Unit Hydrograph, Flood Studies Report methodologies and
hydrogeological analytical modelling). The components of stream flow that can be identified include deep groundwater, intermediate and overland. These analyses have been tested on seven pilot catchments that have a variety of hydrogeological settings and have been used to inform and constrain a mathematical model. The mathematical model used was the NAM (NedbØr-AfstrØmnings-Model) rainfall-runoff model which is a module of DHIs MIKE 11 modelling suite. The results from these pilot catchments have been used to develop a decision model based on catchment descriptors from GIS datasets for the selection of NAM parameters. The datasets used include the mapping of aquifers, vulnerability and subsoils, soils, the Digital Terrain Model, CORINE and lakes. The national coverage of the GIS datasets has allowed the extrapolation of the mathematical model to regional catchments across Ireland.