86 resultados para microcrystalline cellulose
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A method using a combination of ball milling, acid hydrolysis, and ultrasound was developed to obtain a high yield of cellulose nanofibers from flax fibers and microcrystalline cellulose (MCC). Poly(vinyl alcohol) (PVA) nanocomposites were prepared with these additives by a solution-casting technique. The cellulose nanofibers and nanocomposite films that were produced were characterized with Fourier transform infrared spectrometry, X- ray diffraction, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Nanofibers derived from MCC were on average approximately 8 nm in diameter and 111 nm in length. The diameter of the cellulose nanofibers produced from flax fibers was approximately 9 nm, and the length was 141 nm. A significant enhancement of the thermal and mechanical properties was achieved with a small addition of cellulose nanofibers to the polymer matrix. Interestingly, the flax nanofibers had the same reinforcing effects as MCC nanofibers in the matrix. Dynamic mechanical analysis results indicated that the use of cellulose nanofibers (acid hydrolysis) induced a mechanical percolation phenomenon leading to outstanding and unusual mechanical properties through the formation of a rigid filler network in the PVA matrix. X-ray diffraction showed that there was no significant change in the crystallinity of the PVA matrix with the incorporation of cellulose nanofibers. © 2009 Wiley Periodicals, Inc.
Resumo:
Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.
Resumo:
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.
Resumo:
A simple approach to sensor development based on encapsulating a probe molecule in a cellulose support followed by regeneration from an ionic liquid solution is demonstrated here by the codissolution of cellulose and 1-(2-pyridylazo)-2-naphthol in 1-butyl-3-methylimidazolium chloride followed by regeneration with water to form strips which exhibit a proportionate (1 : 1) response to Hg(II) in aqueous solution.
Resumo:
Cellulose-magnetite composites have been prepared by suspension and dispersion of magnetite particles in a homogenous ionic liquid solution of cellulose, followed by regeneration into water, enabling the preparation of magnetically responsive films, flocs, fibers, or beads. The materials prepared were ferromagnetic, with a small superparamagnetic response, characteristic of the initial magnetite added. X-ray diffraction data indicated that the magnetite particles were chemically unaltered after encapsulation with an average particle size of approximately 25 nm.
Resumo:
Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.
Resumo:
A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoating the enzyme with a second. hydrophobic ionic liquid prior to dispersion in the cellulose/ionic liquid solution can provide an increase in enzyme activity relative to that of untreated films, presumably by providing a stabilizing microenvironment for the enzyme.