4 resultados para metapopulation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority, if not all, species have a limited geographic range bounded by a distribution edge. Violent ecotones such as sea coasts clearly produce edges for many species; however such ecotones, while sufficient for the formation of an edge, are not always necessary. We demonstrate this by simulation in discrete time of a spatially structured finite size metapopulation subjected to a spatial gradient in per-unit-time population extinction probability together with spatially structured dispersal and recolonisation. We find that relatively sharp edges separating a homeland or main geographical range from an outland or zone of relatively sparse and ephemeral colonisation can form in gradual environmental gradients. The form and placing of the edge is an emergent property of the metapopulation dynamics. The sharpness of the edge declines with increasing dispersal distance, and is dependent on the relative scales of dispersal distance and gradient length. The space over which the edge develops is short relative to the potential species range. The edge is robust against changes in both the shape of the environmental gradient and to a lesser extent to alterations in the kind of dispersal operating. Persistence times in the absence of environmental gradients are virtually independent of the shape of the dispersal function describing migration. The common finding of bell shaped population density distributions across geographic ranges may occur without the strict necessity of a niche mediated response to a spatially autocorrelated environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the microevolutionary processes shaping within river population genetic structure of aquatic organisms characterized by high levels of homing and spawning site fidelity. Using a microsatellite panel, we observed complex and highly significant levels of intrariver population genetic substructure and Isolation-by-Distance, in the Atlantic salmon stock of a large river system. Two evolutionary models have been considered explaining mechanisms promoting genetic substructuring in Atlantic salmon, the member-vagrant and metapopulation models. We show that both models can be simultaneously used to explain patterns and levels of population structuring within the Foyle system. We show that anthropogenic factors have had a large influence on contemporary population structure observed. In an analytical development, we found that the frequently used estimator of genetic differentiation, F-ST, routinely underestimated genetic differentiation by a factor three to four compared to the equivalent statistic Jost's D-est (Jost 2008). These statistics also showed a near-perfect correlation. Despite ongoing discussions regarding the usefulness of "adjusted" F-ST statistics, we argue that these could be useful to identify and quantify qualitative differences between populations, which are important from management and conservation perspectives as an indicator of existence of biologically significant variation among tributary populations or a warning of critical environmental damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined a remnant host plant (Primula veris L.) habitat network that was last inhabited by the rare butterfly Hamearis lucina L. in north Wales in 1943, to assess the relative contribution of several spatial parameters to its regional extinction. We first examined relationships between P. veris characteristics and H. lucina eggs in surviving H. lucina populations, and used these to predict the suitability and potential carrying capacity of the habitat network in north Wales. This resulted in an estimate of roughly 4500 eggs (ca 227 adults). We developed a discrete space, discrete time metapopulation model to evaluate the relative contribution of dispersal distance, habitat and environmental stochasticity as possible causes of extinction. We simulated the potential persistence of the butterfly in the current network as well as in three artificial (historical and present) habitat networks that differed in the quantity (current and X3) and fragmentation of the habitat (current and aggregated). We identified that reduced habitat quantity and increased isolation would have increased the probability of regional extinction, in conjunction with environmental stochasticity and H. lucina's dispersal distance. This general trend did not change in a qualitative manner when we modified the ability of dispersing females to stay in, and find suitable habitats (by changing the size of the grid cells used in the model). Contrary to most metapopulation model predictions, system persistence declined with increasing migration rate, suggesting that the mortality of migrating individuals in fragmented landscapes may pose significant risks to system-wide persistence. Based on model predictions for the present landscape we argue that a major programme of habitat restoration would be required for a re-established metapopulation to persist for > 100 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the relative effects of host plant dynamics and butterfly-related parameters on butterfly persistence. It considers an empty habitat network where a rare butterfly (Cupido minimus) became extinct in 1939 in part of its historical range in north Wales, UK. Surviving populations of the butterfly in southern Britain were visited to assess use of its host plant (Anthyllis vulneraria) in order to calibrate habitat suitability and carrying capacity in the empty network in north Wales. These data were used to deduce that only a portion ( similar to 19%) of the host plant network from north Wales was likely to be highly suitable for oviposition. Nonetheless, roughly 65,460 eggs (3273 adult equivalents) could be expected to be laid in north Wales, were the empty network to be populated at the same levels as observed on comparable plants in surviving populations elsewhere. Simulated metapopulations of C. minimus in the empty network revealed that time to extinction and patch occupancy were significantly influenced by carrying capacity, butterfly mean dispersal distance and environmental stochasticity, although for most reasonable parameter values, the model system persisted. Simulation outputs differed greatly when host plant dynamics was incorporated into the modelled butterfly dynamics. Cupido minimus usually went extinct when host plant were at low densities. In these simulations host plant dynamics appeared to be the most important determinant of the butterfly's regional extirpation. Modelling the outcome of a reintroduction programme to C. minimus variation at high quality locations, revealed that 65% of systems survived at least 100 years. Given the current amount of resources of the north Wales landscape, the persistence of C. minimus under a realistic reintroduction programme has a good chance of being successful, if carried out in conjunction with a host plant management programme.