8 resultados para math.DG
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Novel technology dependent scaling parameters i.e. spacer to gradient ratio and effective channel length (Leff) are proposed for source/drain engineered DG MOSFET, and their significance in minimizing short channel effects (SCES) in high-k gate dielectrics is discussed in detail. Results show that a high-k dielectric should be associated with a higher spacer to gradient ratio to minimise SCEs The analytical model agrees with simulated data over the entire range of spacer widths, doping gradients, high-k gate dielectrics and effective channel lengths.
Resumo:
In this paper, we propose for the first time, an analytical model for short channel effects in nanoscale source/drain extension region engineered double gate (DG) SOI MOSFETs. The impact of (i) lateral source/drain doping gradient (d), (ii) spacer width (s), (iii) spacer to doping gradient ratio (s/d) and (iv) silicon film thickness (T-si), on short channel effects - threshold voltage (V-th) and subthreshold slope (S), on-current (I-on), off-current (I-on) and I-on/I-off is extensively analysed by using the analytical model and 2D device simulations. The results of the analytical model confirm well with simulated data over the entire range of spacer widths, doping gradients and effective channel lengths. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimised to achieve high values of on-currents. The present work provides valuable design insights in the performance of nanoscale DG Sol devices with optimal source/drain engineering and serves as a tool to optimise important device and technological parameters for 65 nm technology node and below. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Given that the ability to manage numbers is essential in a modern society, mathematics anxiety – which has been demonstrated to have unfortunate consequences in terms of mastery of math – has become a subject of increasing interest, and the need to accurately measure it has arisen. One of the widely employed scales to measure math anxiety is the Abbreviated Math Anxiety Scale (AMAS) (Hopko, Mahadevan, Bare & Hunt, 2003). The first aim of the present paper was to confirm the factor structure of the AMAS when administered to Italian high school and college students, and to test the invariance of the scale across educational levels. Additionally, we assessed the reliability and validity of the Italian version of the scale. Finally, we tested the invariance of the AMAS across genders. The overall findings provide evidence for the validity and reliability of the AMAS when administered to Italian students.
Resumo:
BACKGROUND: Lower numerical ability is associated with poorer understanding of health statistics, such as risk reductions of medical treatment. For many people, despite good numeracy skills, math provokes anxiety that impedes an ability to evaluate numerical information. Math-anxious individuals also report less confidence in their ability to perform math tasks. We hypothesized that, independent of objective numeracy, math anxiety would be associated with poorer responding and lower confidence when calculating risk reductions of medical treatments.
METHODS: Objective numeracy was assessed using an 11-item objective numeracy scale. A 13-item self-report scale was used to assess math anxiety. In experiment 1, participants were asked to interpret the baseline risk of disease and risk reductions associated with treatment options. Participants in experiment 2 were additionally provided a graphical display designed to facilitate the processing of math information and alleviate effects of math anxiety. Confidence ratings were provided on a 7-point scale.
RESULTS: Individuals of higher objective numeracy were more likely to respond correctly to baseline risks and risk reductions associated with treatment options and were more confident in their interpretations. Individuals who scored high in math anxiety were instead less likely to correctly interpret the baseline risks and risk reductions and were less confident in their risk calculations as well as in their assessments of the effectiveness of treatment options. Math anxiety predicted confidence levels but not correct responding when controlling for objective numeracy. The graphical display was most effective in increasing confidence among math-anxious individuals.
CONCLUSIONS: The findings suggest that math anxiety is associated with poorer medical risk interpretation but is more strongly related to confidence in interpretations.