31 resultados para markov random field
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
This research investigated the unconfined flow through dams. The hydraulic conductivity was modeled as spatially random field following lognormal distribution. Results showed that the seepage flow produced from the stochastic solution was smaller than its deterministic value. In addition, the free surface was observed to exit at a point lower than that obtained from the deterministic solution. When the hydraulic conductivity was strongly correlated in the horizontal direction than the vertical direction, the flow through the dam has markedly increased. It is suggested that it may not be necessary to construct a core in dams made from soils that exhibit high degree of variability.
Resumo:
Visual salience is an intriguing phenomenon observed in biological neural systems. Numerous attempts have been made to model visual salience mathematically using various feature contrasts, either locally or globally. However, these algorithmic models tend to ignore the problem’s biological solutions, in which visual salience appears to arise during the propagation of visual stimuli along the visual cortex. In this paper, inspired by the conjecture that salience arises from deep propagation along the visual cortex, we present a Deep Salience model where a multi-layer model based on successive Markov random fields (sMRF) is proposed to analyze the input image successively through its deep belief propagation. As a result, the foreground object can be automatically separated from the background in a fully unsupervised way. Experimental evaluation on the benchmark dataset validated that our Deep Salience model can consistently outperform eleven state-of-the-art salience models, yielding the higher rates in the precision-recall tests and attaining the best F-measure and mean-square error in the experiments.
Resumo:
This paper investigated the problem of confined flow under dams and water retaining structuresusing stochastic modelling. The approach advocated in the study combined a finite elementsmethod based on the equation governing the dynamics of incompressible fluid flow through aporous medium with a random field generator that generates random hydraulic conductivity basedon lognormal probability distribution. The resulting model was then used to analyse confined flowunder a hydraulic structure. Cases for a structure provided with cutoff wall and when the wall didnot exist were both tested. Various statistical parameters that reflected different degrees ofheterogeneity were examined and the changes in the mean seepage flow, the mean uplift forceand the mean exit gradient observed under the structure were analysed. Results reveal that underheterogeneous conditions, the reduction made by the sheetpile in the uplift force and exit hydraulicgradient may be underestimated when deterministic solutions are used.
Resumo:
We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.
Resumo:
An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently. In this article the influence of the wave spectrum in the energy range onto field-line random walk is investigated by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behavior of the field-lines. If the energy range spectral index exceeds unity a free-streaming behavior of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field-line wandering.
Resumo:
The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.
Resumo:
The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.
Resumo:
True random number generation is crucial in hardware security applications. Proposed is a voltage-controlled true random number generator that is inherently field-programmable. This facilitates increased entropy as a randomness source because there is more than one configuration state which lends itself to more compact and low-power architectures. It is evaluated through electrical characterisation and statistically through industry-standard randomness tests. To the best of the author's knowledge, it is one of the most efficient designs to date with respect to hardware design metrics.
Resumo:
A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.
Resumo:
We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.
Resumo:
A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.
Resumo:
A series of ultra-lightweight digital true random number generators (TRNGs) are presented. These TRNGs are based on the observation that, when a circuit switches from a metastable state to a bi-stable state, the resulting state may be random. Four such circuits with low hardware cost are presented: one uses an XOR gate; one uses a lookup table; one uses a multiplexer and an inverter; and one uses four transistors. The three TRNGs based on the first three circuits are implemented on a field programmable gate array and successfully pass the DIEHARD RNG tests and the National Institute of Standard and Technology (NIST) RNG tests. To the best of the authors' knowledge, the proposed TRNG designs are the most lightweight among existing TRNGs.