28 resultados para marine-derived fungus
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.
Resumo:
Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments.
Resumo:
Carbon stable-isotope analysis showed that individual brown trout Salmo trutta in Loch Lomond adopted strategies intermediate to that of freshwater residency or anadromy, suggesting either repeated movement between freshwater and marine environments, or estuarine residency. Carbon stable-isotope (delta C-13) values from Loch Lomond brown trout muscle tissue ranged from those indicative of assimilation of purely freshwater-derived carbon to those reflecting significant utilization of marine-derived carbon. A single isotope, two-source mixing model indicated that, on average, marine C made a 33% contribution to the muscle tissue C of Loch Lomond brown trout. Nitrogen stable isotope, delta N-15, but not delta C-13 was correlated with fork length suggesting that larger fish were feeding at a higher trophic level but that marine feeding was not indicated by larger body size. These results are discussed with reference to migration patterns in other species. (c) 2008 The Authors Journal compilation (c) 2008 The Fisheries Society of the British Isles.
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.
Resumo:
Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm3 were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1x105 cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.
Resumo:
The impact of ancient fertilization practices on the biogeochemistry of arable soils on the remote Scottish island of Hirta, St Kilda was investigated. The island was relatively unusual in that the inhabitants exploited seabird colonies for food, enabling high population densities to be sustained on a limited, and naturally poor, soil resource. A few other Scottish islands, the Faeroes and some Icelandic Islands, had similar cultural dependence on seabirds. Fertilization with human and animal waste streams (mainly peat ash and bird carcases) on Hirta over millennia has led to over-deepened, nutrient-rich soils (plaggen). This project set out to examine if this high rate of fertilization had adversely impacted the soil, and if so, to determine which waste streams were responsible. Arable soils were considerably elevated in Pb and Zn compared to non-arable soils. Using Pb isotope signatures and analysis of the waste streams, it was determined that this pollution came from peat and turf ash (Pb and Zn) and from bird carcases (Zn). This was also confirmed by (13)C and (15)N analysis of the profiles which showed that soil organic matter was highly enriched in marine-derived C and N compared to non-arable soils. The pollution of such a remote island may be typical of other 'bird culture' islands, and peat ash contamination of marginal arable soils at high latitudes may be widespread in terms of geographical area, but less intense at specific locations due to lower population densities than on Hirta.
Resumo:
A total synthesis of phomactin G (3), which is a central intermediate in the biosynthesis of phomactin A (5) in Phoma sp. is described. The synthesis is based on a Cr(II)/Ni(II) macrocyclisation from the aldehyde vinyl iodide 9, leading to 16, followed by sequential conversion of 16 into the -epoxide 21 and the ketone 25 which, on deprotection, led to (±)-phomactin G. Phomactin G (3) shares an interesting structural homology with phomactin D (2), the most potent PAF-antagonist metabolite in Phoma sp. It is most likely converted into phomactin A (5), by initial allylic oxidation to the transient -alcohol phomactin structure 4, known as Sch 49028, followed by spontaneous pyran ring formation.
Resumo:
The copepod Calanus finmarchicus is the major contributor to zooplankton biomass in the North Atlantic and Norwegian Sea, but recent studies have shown a 70% decrease in abundance as well as a northward shift in the species' range. Insights into dispersal capabilities gained from population genetic studies will be crucial in predicting the response of C. finmarchicus communities to climate change and, consequently, we have developed a set of expressed sequence tag-derived microsatellite markers to allow fine-scale elucidation of population structuring and dispersal. Ten polymorphic markers displayed between two and 19 alleles, with levels of expected heterozygosity ranging from 0.044 to 0.924.