11 resultados para magnetic orientation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a "compass organelle" containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic "Kalmijn-Blakemore" pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Epteskus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animals can call on a multitude of sensory information to orient and navigate. In some cases they may calibrate these cues against each other to establish the most accurate information available. One such cue is the pattern of polarized light in the sky, which may be used as a geographical reference to calibrate other cues in the compass mechanism. Mammals, however, have not been shown to use this cue, even though they do calibrate a magnetic compass with sunset. In this paper we demonstrate that bats use polarization cues at sunset to calibrate a magnetic compass, subsequently used for orientation during a homing experiment. It is thus the only mammal known so far to make use of the polarization pattern in the sky. This is an intriguing finding as currently there is no clear understanding of how this cue is perceived in this taxon and has general implications for the sensory biology of mammalian vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
To determine the optimal transcranial magnetic stimulation (TMS) coil direction for inducing motor responses in the tongue in a group of non-neurologically impaired participants.
Methods
Single-pulse TMS was delivered using a figure-of-eight Magstim 2002 TMS coil. Study 1 investigated the effect of eight different TMS coil directions on the motor-evoked potentials elicited in the tongue in eight adults. Study 2 examined active motor threshold levels at optimal TMS coil direction compared to a customarily-used ventral-caudal direction. Study 3 repeated the procedure of Study 1 at five different sites across the tongue motor cortex in one adult.
Results
Inter-individual variability in optimal direction was observed, with an optimal range of directions determined for the group. Active motor threshold was reduced when a participant's own optimal TMS coil direction was used compared to the ventral-caudal direction. A restricted range of optimal directions was identified across the five cortical positions tested.
Conclusions
There is a need to identify each individual's own optimal TMS coil direction in investigating tongue motor cortex function. A recommended procedure for determining optimal coil direction is described.
Significance
Optimized TMS procedures are needed so that TMS can be utilized in determining the underlying neurophysiological basis of various motor speech disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the static & dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Structural characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.