41 resultados para macromolecular carrier

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitising drug and visible light causes destruction of selected cells. Due to the lack of true selectivity of preformed photosensitisers for neoplastic tissue and their high molecular weights, PDT of superficial skin lesions has traditionally been mediated by topical application of the porphyrin precursor 5-aminolevulinic acid (ALA). Objective: This article aims to review the traditional formulation-based approaches taken to topical delivery of ALA and discusses the more innovative strategies investigated for enhancement of PDT mediated by topical application of ALA and preformed photosensitisers. Methods: All of the available published print and online literature in this area was reviewed. As drug delivery of agents used in PDT is still something of an emerging field, it was not necessary to go beyond literature from the last 30 years. Results/conclusion: PDT of neoplastic skin lesions is currently based almost exclusively on topical application of simple semisolid dosage forms containing ALA or its methyl ester. Until expiry of patents on the current market-leading products, there is unlikely to be a great incentive to engage in design and evaluation of innovative formulations for topical PDT, especially those containing the more difficult-to-deliver preformed photosensitisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. Objective: This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. Methods: Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. Results/conclusion: PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. in addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.