5 resultados para macrofauna
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The relationship between biodiversity and ecological processes is currently the focus of considerable research effort, made all the more urgent by the rate of biodiversity loss world-wide. Rigorous experimental approaches to this question have been dominated by terrestrial ecologists, but shallow-water marine systems offer great opportunities by virtue of their relative ease of manipulation, fast response times and well-understood effects of macrofauna on sediment processes. In this paper, we describe a series of experiments whereby species richness has been manipulated in a controlled way and the concentrations of nutrients (ammonium, nitrate and phosphate) in the overlying water measured under these different treatments. The results indicate variable effects of species and location on ecosystem processes, and are discussed in the context of emerging mainstream ecological theory on biodiversity and ecosystem relations. Extensions of the application of the experimental approach to species-rich, large-scale benthic systems are discussed and the potential for novel analyses of existing data sets is highlighted. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N) by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity) and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.