28 resultados para long memory
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The problem of model selection of a univariate long memory time series is investigated once a semi parametric estimator for the long memory parameter has been used. Standard information criteria are not consistent in this case. A Modified Information Criterion (MIC) that overcomes these difficulties is introduced and proofs that show its asymptotic validity are provided. The results are general and cover a wide range of short memory processes. Simulation evidence compares the new and existing methodologies and empirical applications in monthly inflation and daily realized volatility are presented.
Resumo:
The paper addresses the issue of choice of bandwidth in the application of semiparametric estimation of the long memory parameter in a univariate time series process. The focus is on the properties of forecasts from the long memory model. A variety of cross-validation methods based on out of sample forecasting properties are proposed. These procedures are used for the choice of bandwidth and subsequent model selection. Simulation evidence is presented that demonstrates the advantage of the proposed new methodology.
Resumo:
This paper investigates if benchmark African equity indices exhibit the stylized facts reported for financial time-series returns. The returns distributions of the Africa All-Share, Large, Medium and Small Company Indices were found to be leptokurtotic, had fat-tails, over time experienced volatility clustering and exhibited long memory in volatility. Both the All-Share and Large Company Indices were found to exhibit leverage effects. In contrast, positive shocks had a greater impact on future volatility for the Small Company Index which implies a reverse leverage effect. This finding could reflect a bull/bubble market for small capitalisation stocks in Africa.
Resumo:
We study the establishment of vortex entanglement in remote Bose-Einstein condensates (BECs). We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently passed to the matterlike systems. Our proposal thus represents a building block for novel dissipation-free and long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing the feasibility of our scheme, and present an operative technique for the indirect inference of the set vortex entanglement.
Resumo:
Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.
Resumo:
Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.
Resumo:
Despite progress in defining a pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, orally bioavailable compounds that prevent its effects on hippocampal synaptic plasticity and cognitive function have not yet emerged. A particularly attractive therapeutic strategy is to selectively neutralize small, soluble Abeta oligomers that have recently been shown to mediate synaptic dysfunction. METHODS: Using electrophysiological, biochemical, and behavioral assays, we studied how scyllo-inositol (AZD-103; molecular weight, 180) neutralizes the acutely toxic effects of Abeta on synaptic function and memory recall. RESULTS: Scyllo-inositol, but not its stereoisomer, chiro-inositol, dose-dependently rescued long-term potentiation in mouse hippocampus from the inhibitory effects of soluble oligomers of cell-derived human Abeta. Cerebroventricular injection into rats of the soluble Abeta oligomers interfered with learned performance on a complex lever-pressing task, but administration of scyllo-inositol via the drinking water fully prevented oligomer-induced errors. INTERPRETATION: A small, orally available natural product penetrates into the brain in vivo to rescue the memory impairment produced by soluble Abeta oligomers through a mechanism that restores hippocampal synaptic plasticity.
Resumo:
It has been suggested that there are systematic distortions in children's memory for temporal durations, such that children's memory is not just less accurate than that of adults but qualitatively different. Experiment I replicated the memory distortion effect by demonstrating developmental change in the tendency to confuse a reference duration with one that is shorter rather than longer than it. When the long-term memory demands of the task were reduced by providing reminders of the reference duration on every trial, there were no such qualitative changes in error patterns (Experiment 2). Further evidence for developmental changes in memory distortion was found in the temporal generalization task of Experiment 3, in which stimuli were spaced logarithmically rather than linearly. In Experiment 4, a similar distortion pattern was absent in a task in which children made judgments about the pitch rather than the duration of stimuli, suggesting the effect may be specific to time estimation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
Transcription in eukaryotic genomes generates an extensive array of non-protein-coding RNA, the functional significance of which is mostly unknown. We are investigating the link between non-coding RNA and chromatin regulation through analysis of FLC - a regulator of flowering time in Arabidopsis and a target of several chromatin pathways. Here we use an unbiased strategy to characterize non-coding transcripts of FLC and show that sense/antisense transcript levels correlate in a range of mutants and treatments, but change independently in cold-treated plants. Prolonged cold epigenetically silences FLC in a Polycomb-mediated process called vernalization. Our data indicate that upregulation of long non-coding antisense transcripts covering the entire FLC locus may be part of the cold-sensing mechanism. Induction of these antisense transcripts occurs earlier than, and is independent of, other vernalization markers and coincides with a reduction in sense transcription. We show that addition of the FLC antisense promoter sequences to a reporter gene is sufficient to confer cold-induced silencing of the reporter. Our data indicate that cold-induced FLC antisense transcripts have an early role in the epigenetic silencing of FLC, acting to silence FLC transcription transiently. Recruitment of the Polycomb machinery then confers the epigenetic memory. Antisense transcription events originating from 3' ends of genes might be a general mechanism to regulate the corresponding sense transcription in a condition/stage-dependent manner.
Resumo:
One of the enduring illusions about Northern Ireland is that its society can be conceptualized through a binary distinction between protestant and catholic. unionist and nationalist. It is increasingly apparent that these broad domains are themselves fractured and diverse and that otherness is often conceived from within rather than without. Northern Ireland can also be viewed as a laboratory for identity formation as unionists and loyalists strive to reconcile themselves with the fundamental political changes that have followed in the wake of the Peace Process. This paper considers one aspect of the contestation of belonging that increasingly characterizes unionism. It examines the competition for the ownership of the mythology of the Battle of the Somme ( 1916), long a key event in the unionist narrative. In particular, the paper addresses the ways in which paramilitary organizations are using the Somme to legitimate their own activities but also to distance the loyalist working classes from the former hegemonic Britishness of official unionism and the sectarianism of the Orange Order. The analysis concludes that loyalist identity is being conceptualized thorough a narrative of betrayal from within and at an intensely localized scale.
Resumo:
BACKGROUND AND PURPOSE:
Amyloid-ß (Aß) aggregation into synaptotoxic, prefibrillar oligomers is a major pathogenic event underlying the neuropathology of Alzheimer's disease (AD). The pharmacological and neuroprotective properties of a novel Aß aggregation inhibitor, SEN1269, were investigated on aggregation and cell viability and in test systems relevant to synaptic function and memory, using both synthetic Aß(1-42) and cell-derived Aß oligomers.
EXPERIMENTAL APPROACH:
Surface plasmon resonance studies measured binding of SEN1269 to Aß(1-42) . Thioflavin-T fluorescence and MTT assays were used to measure its ability to block Aß(1-42) -induced aggregation and reduction in cell viability. In vitro and in vivo long-term potentiation (LTP) experiments measured the effect of SEN1269 on deficits induced by synthetic Aß(1-42) and cell-derived Aß oligomers. Following i.c.v. administration of the latter, a complex (alternating-lever cyclic ratio) schedule of operant responding measured effects on memory in freely moving rats.
KEY RESULTS:
SEN1269 demonstrated direct binding to monomeric Aß(1-42) , produced a concentration-related blockade of Aß(1-42) aggregation and protected neuronal cell lines exposed to Aß(1-42) . In vitro, SEN1269 alleviated deficits in hippocampal LTP induced by Aß(1-42) and cell-derived Aß oligomers. In vivo, SEN1269 reduced the deficits in LTP and memory induced by i.c.v. administration of cell-derived Aß oligomers.
CONCLUSIONS AND IMPLICATIONS:
SEN1269 protected cells exposed to Aß(1-42) , displayed central activity with respect to reducing Aß-induced neurotoxicity and was neuroprotective in electrophysiological and behavioural models of memory relevant to Aß-induced neurodegeneration. It represents a promising lead for designing inhibitors of Aß-mediated synaptic toxicity as potential neuroprotective agents for treating AD.
Resumo:
Oligomers of beta-amyloid (Aß) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aß-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aß monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aß1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aß1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aß and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.