11 resultados para lexicon

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media channels, such as Facebook or Twitter, allow for people to express their views and opinions about any public topics. Public sentiment related to future events, such as demonstrations or parades, indicate public attitude and therefore may be applied while trying to estimate the level of disruption and disorder during such events. Consequently, sentiment analysis of social media content may be of interest for different organisations, especially in security and law enforcement sectors. This paper presents a new lexicon-based sentiment analysis algorithm that has been designed with the main focus on real time Twitter content analysis. The algorithm consists of two key components, namely sentiment normalisation and evidence-based combination function, which have been used in order to estimate the intensity of the sentiment rather than positive/negative label and to support the mixed sentiment classification process. Finally, we illustrate a case study examining the relation between negative sentiment of twitter posts related to English Defence League and the level of disorder during the organisation’s related events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research in emotion analysis of text suggest that emotion lexicon based features are superior to corpus based n-gram features. However the static nature of the general purpose emotion lexicons make them less suited to social media analysis, where the need to adopt to changes in vocabulary usage and context is crucial. In this paper we propose a set of methods to extract a word-emotion lexicon automatically from an emotion labelled corpus of tweets. Our results confirm that the features derived from these lexicons outperform the standard Bag-of-words features when applied to an emotion classification task. Furthermore, a comparative analysis with both manually crafted lexicons and a state-of-the-art lexicon generated using Point-Wise Mutual Information, show that the lexicons generated from the proposed methods lead to significantly better classi- fication performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are multiple reasons to expect that recognising the verbal content of emotional speech will be a difficult problem, and recognition rates reported in the literature are in fact low. Including information about prosody improves recognition rate for emotions simulated by actors, but its relevance to the freer patterns of spontaneous speech is unproven. This paper shows that recognition rate for spontaneous emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances. The models are derived by adapting an already existing corpus, the British National Corpus (BNC). An emotional lexicon is used to identify emotionally coloured words, and sentences containing these words are recombined with the BNC to form a corpus with a raised proportion of emotional material. Using a language model based on that technique improves recognition rate by about 20%. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving a clearer picture of categorial distinctions in the brain is essential for our understanding of the conceptual lexicon, but much more fine-grained investigations are required in order for this evidence to contribute to lexical research. Here we present a collection of advanced data-mining techniques that allows the category of individual concepts to be decoded from single trials of EEG data. Neural activity was recorded while participants silently named images of mammals and tools, and category could be detected in single trials with an accuracy well above chance, both when considering data from single participants, and when group-training across participants. By aggregating across all trials, single concepts could be correctly assigned to their category with an accuracy of 98%. The pattern of classifications made by the algorithm confirmed that the neural patterns identified are due to conceptual category, and not any of a series of processing-related confounds. The time intervals, frequency bands and scalp locations that proved most informative for prediction permit physiological interpretation: the widespread activation shortly after appearance of the stimulus (from 100. ms) is consistent both with accounts of multi-pass processing, and distributed representations of categories. These methods provide an alternative to fMRI for fine-grained, large-scale investigations of the conceptual lexicon. © 2010 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade the concept of ‘resilience’ has been mobilised across an increasingly wide range of policy arenas. For example, it has featured prominently within recent discussions on the nature of warfare, the purpose of urban and regional planning, the effectiveness of development policies, the intent of welfare reform and the stability of the international financial system. The term’s origins can be traced back to the work of the ecologist Crawford S. Holling and his formulation of a science of complexity. This paper reflects on the origins of these ideas and their travels from the field of natural resource management, which it now dominates, to contemporary social practices and policy arenas. It reflects on the ways in which a lexicon of complex adaptive systems, grounded in an epistemology of limited knowledge and uncertain futures, seeks to displace ongoing ‘dependence’ on professionals by valorising self-reliance and responsibility as techniques to be applied by subjects in the making of the resilient self. In so doing, resilience is being mobilised to govern a wide range of threats and sources of uncertainty, from climate change, financial crises and terrorism, to the sustainability of development, the financing of welfare and providing for an aging population. As such, ‘resilience’ risks becoming a measure of its subjects’ ‘fitness’ to survive in what are pre-figured as natural, turbulent orders of things.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysing public sentiment about future events, such as demonstration or parades, may provide valuable information while estimating the level of disruption and disorder during these events. Social media, such as Twitter or Facebook, provides views and opinions of users related to any public topics. Consequently, sentiment analysis of social media content may be of interest to different public sector organisations, especially in the security and law enforcement sector. In this paper we present a lexicon-based approach to sentiment analysis of Twitter content. The algorithm performs normalisation of the sentiment in an effort to provide intensity of the sentiment rather than positive/negative label. Following this, we evaluate an evidence-based combining function that supports the classification process in cases when positive and negative words co-occur in a tweet. Finally, we illustrate a case study examining the relation between sentiment of twitter posts related to English Defence League and the level of disorder during the EDL related events.