19 resultados para learning mathematics

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The provision of mathematics learning support in higher-level institutions on the island of Ireland has developed rapidly in recent times with the number of institutions providing some form of support doubling in the past seven years. The Irish Mathematics Learning Support Network aims to inform all mathematics support practitioners in Ireland on relevant issues. Consequently it was decided that a detailed picture of current provision was necessary. A comprehensive online survey was conducted to amass the necessary data. The ultimate aim of the survey is to benefit all mathematics support practitioners in Ireland, in particular those in third-level institutions who require further support to enhance the mathematical learning experience of their students. The survey reveals that the majority of Irish higher-level institutions provide mathematics learning support to some extent, with 65% doing so through a support centre. Learners of service mathematics are the primary users: first-year science, engineering and business undergraduates, with non-traditional students being a sizeable element. Despite the growing recognition for the need to offer mathematics learning support almost half of the centres are subject to annual review. Further, less than half the support offerings have a dedicated full-time manager, while 60% operate with a staff of five or fewer. The elevation of mathematics support as a viable and worthwhile career in order to attract and retain high quality staff is seen by many respondents as the crucial next phase of development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2015 the Irish Mathematics Learning Support Network (IMLSN) commissioned a comprehensive audit of the extent and nature of mathematics learning support (MLS) provision on the island of Ireland. An online survey was sent to 32 institutions, including universities, institutes of technology, further education and teacher training colleges, and a 97% response rate was achieved. While the headline figure – 84% of institutions that responded to the survey provide MLS – sounds good, deeper analysis reveals that the true state of MLS is not so solid. For example, in 25% of institutions offering MLS, only five hours per week (at most) of physical MLS are available, while in 20% of institutions the service is provided by only one or two staff members. Furthermore, training of tutors is minimal or non-existent in at least half of the institutions offering MLS. The results provide an illuminating picture, however, identifying the true state of MLS in Ireland is beneficial only if it informs developments in the years ahead. This talk will present some of the findings of the survey in more depth along with conclusions and recommendations. Key among these is the need for institutions to recognise MLS as a vital element of mathematics teaching and learning strategy at third level and devote the necessary resources to facilitate the provision of a service which can grow and adapt to meet student requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study sought to extend earlier work by Mulhern and Wylie (2004) to investigate a UK-wide sample of psychology undergraduates. A total of 890 participants from eight universities across the UK were tested on six broadly defined components of mathematical thinking relevant to the teaching of statistics in psychology - calculation, algebraic reasoning, graphical interpretation, proportionality and ratio, probability and sampling, and estimation. Results were consistent with Mulhern and Wylie's (2004) previously reported findings. Overall, participants across institutions exhibited marked deficiencies in many aspects of mathematical thinking. Results also revealed significant gender differences on calculation, proportionality and ratio, and estimation. Level of qualification in mathematics was found to predict overall performance. Analysis of the nature and content of errors revealed consistent patterns of misconceptions in core mathematical knowledge , likely to hamper the learning of statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre-and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean leaxning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.