208 resultados para laser-acceleration. high intensity lasers, radiation-pressure acceleration

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated the promising radiation pressure acceleration (RPA) mechanism of laser-driven ion acceleration at currently achievable laser and target parameters through a large number of two-dimensional particle-in-cell simulations and experiments. High-density monoenergetic ion beams with unprecedented qualities such as narrow-peaked spectrum, lower-divergence and faster energy-scaling are obtained, compared with the conventional target normal sheath acceleration. The key condition for stable RPA from thin foils by intense circularly polarized lasers has been identified, under which the stable RPA regime can be extended from ultrahigh intensities > 10(22) W cm(-2) to a currently accessible range 10(20)-10(21) W cm(-2). The dependences of the RPA mechanism on laser polarization, intensity and on the target composition and areal density have been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 10(20) W cm(-2). Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (< 4 degrees). This new method allows the construction of ultra-compact proton and ion accelerators with ultra-short particle bursts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A short overview of laser-plasma acceleration of ions is presented. The focus is on some recent experimental results and the related theoretical work on advanced regimes. These latter include in particular target normal sheath acceleration using ultrashort low-energy pulses and structured targets, radiation pressure acceleration in both thick and ultrathin targets and collisionless shock acceleration in moderate density plasmas. For each approach, open issues and the need and potential for further developments are briefly discussed. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of energetic proton production resulting from the interaction of high-intensity laser pulses with foil targets are described. Through the use of layered foil targets and heating of the target material we are able to distinguish three distinct populations of protons. One high energy population is associated with a proton source near the front surface of the target and is observed to be emitted with a characteristic ring structure. A source of typically lower energy, lower divergence protons originates from the rear surface of the target. Finally, a qualitatively separate source of even lower energy protons and ions is observed with a large divergence. Acceleration mechanisms for these separate sources are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-mu m aluminum target was observed when 0.1-6 mu m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results from experiments performed at the Rutherford Appleton Laboratory using the VULCAN laser facility (I>5x10(19) W cm(-2)). Single wire targets were used, and on some shots additional objects were placed near the target. These were positioned so that they were not irradiated by the laser. Proton emission from single wire targets was observed as radially symmetric structures (