12 resultados para laser interferometry

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer Solar system. These ices are continuously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2 +, N2 + and O2 +) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yields for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Importance: This article provides, to our knowledge, the first longitudinal population-based data on refractive error (RE) in Chinese persons.

Objective: To study cohort effects and changes associated with aging in REs among Chinese adults.

Design, Setting, and Participants: A 2-year, longitudinal population-based cohort study was conducted in southern China. Participants, identified using cluster random sampling, included residents of Yuexiu District, Guangzhou, China, aged 35 years or older who had undergone no previous eye surgery.

Methods: Participants underwent noncycloplegic automated refraction and keratometry in December 2008 and December 2010; in a random 50% sample of the participants, anterior segment ocular coherence tomography measurement of lens thickness, as well as measurement of axial length and anterior chamber depth by partial coherence laser interferometry, were performed.

Main Outcomes and Measures: Two-year change in spherical equivalent refraction (RE), lens thickness, axial length, and anterior chamber depth in the right eye.

Results: A total of 745 individuals underwent biometric testing in both 2008 and 2010 (2008 mean [SD] age, 52.2 [11.5] years; 53.7% women). Mean RE showed a 2-year hyperopic shift from −0.44 (2.21) to −0.31 (2.26) diopters (D) (difference, +0.13; 95% CI, 0.11 to 0.16). A consistent 2-year hyperopic shift of 0.09 to 0.22 D was observed among participants aged 35 to 64 years when stratifying by decade, suggesting that a substantial change in RE with aging may occur during this 30-year period. Cross-sectionally, RE increased only in the cohort younger than 50 years (0.11 D/y; 95% CI, 0.06 to 0.16). In the cross-sectional data, axial length decreased at −0.06 mm/y (95% CI, −0.09 to −0.04), although the 2-year change in axial length was positive and thus could not explain the cross-sectional difference. These latter results suggest a cohort effect, with greater myopia developing among younger persons.

Conclusions and Relevance: This first Chinese population-based longitudinal study of RE provides evidence for both important longitudinal aging changes and cohort effects, most notably greater myopia prevalence among younger persons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To study the population distribution and longitudinal changes in anterior chamber angle width and its determinants among Chinese adults. Design: Prospective cohort, population-based study. Participants: Persons aged 35 years or more residing in Guangzhou, China, who had not previously undergone incisional or laser eye surgery. Methods: In December 2008 and December 2010, all subjects underwent automated keratometry, and a random 50% sample had anterior segment optical coherence tomography with measurement of angle-opening distance at 500 μm (AOD500), angle recess area (ARA), iris thickness at 750 μm (IT750), iris curvature, pupil diameter, corneal thickness, anterior chamber width (ACW), lens vault (LV), and lens thickness (LT) and measurement of axial length (AL) and anterior chamber depth (ACD) by partial coherence laser interferometry. Main Outcome Measures: Baseline and 2-year change in AOD500 and ARA in the right eye. Results: A total of 745 subjects were present for full biometric testing in both 2008 and 2010 (mean age at baseline, 52.2 years; standard deviation [SD], 11.5 years; 53.7% were female). Test completion rates in 2010 varied from 77.3% (AOD500: 576/745) to 100% (AL). Mean AOD500 decreased from 0.25 mm (SD, 0.13 mm) in 2008 to 0.21 mm (SD, 13 mm) in 2010 (difference, -0.04; 95% confidence interval [CI], -0.05 to -0.03). The ARA decreased from 21.5±3.73 10-2 mm2 to 21.0±3.64 10 -2 mm2 (difference, -0.46; 95% CI, -0.52 to -0.41). The decrease in both was most pronounced among younger subjects and those with baseline AOD500 in the widest quartile at baseline. The following baseline variables were significantly associated with a greater 2-year decrease in both AOD500 and ARA: deeper ACD, steeper iris curvature, smaller LV, greater ARA, and greater AOD500. By using simple regression models, we could explain 52% to 58% and 93% of variation in baseline AOD500 and ARA, respectively, but only 27% and 16% of variation in 2-year change in AOD500 and ARA, respectively. Conclusions: Younger persons and those with the least crowded anterior chambers at baseline have the largest 2-year decreases in AOD500 and ARA. The ability to predict change in angle width based on demographic and biometric factors is relatively poor, which may have implications for screening. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. © 2012 American Academy of Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferometry has been used to investigate the spatio-temporal evolution of electron number density following 248 nm laser ablation of a magnesium target. Fringe shifts were measured as a function of laser power density for a circular spot obtained using a random phase plate. Line averaged electron number densities were obtained at delay times up to ∼100 ns after the laser pulse. Density profiles normal to the target surface were recorded for power densities on target in the range 125–300 MW cm−2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam was fully characterized: up to 10(9) electrons per shot were accelerated, most of which in a beam of aperture below 10(-3) sterad, with energies up to 40 MeV. These measurements, which are well modeled by three-dimensional numerical simulations, validate a reliable method to generate ultrashort and ultracollimated electron bunches. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved probe interferometry was used to obtain complete density mapping of laser produced plasmas. The plasma was produced by symmetrical irradiation of thin targets, to be used for short pulse delayed interaction experiments. The progress in the plasma characterization due to the use of a picosecond pulse probe is reported, and the relative merits of different target designs are also discussed. The two-dimensional density maps obtained appear to be in substantial agreement with two-dimensional hydrodynamic code predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal evolution of plasma jets from micrometre-scale thick foils following the interaction of intense (3 × 10 W cm ) laser pulses is studied systematically by time resolved optical interferometry. The fluid velocity in the plasma jets is determined by comparing the data with 2D hydrodynamic simulation, which agrees with the expected hole-boring (HB) velocity due to the laser radiation pressure. The homogeneity of the plasma density across the jets has been found to be improved substantially when irradiating the laser at circular polarization compared to linear polarization. While overdense plasma jets were formed efficiently for micrometre thick targets, decreasing the target areal density and/or increasing the irradiance on the target have provided indication of transition from the 'HB' to the 'light sail (LS)' regime of RPA, characterized by the appearance of narrow-band spectral features at several MeV/nucleon in proton and carbon spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.