68 resultados para laser cut, light excluding venetians

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed extreme-ultraviolet (XUV) ''line-free'' continuum emission from laser plasmas of high atomic number elements using targets irradiated with 248 nm laser pulses of 7 ps duration at a power density of similar to 10(13) W/cm(2). Using both dispersive spectroscopy and streak camera detection, the spectral and temporal evolution of XUV continuum emission for several target atomic numbers has been measured on a time scale with an upper limit of several hundred picoseconds limited by amplified spontaneous emission. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly anisotropic, beam-like neutron emission with peak flux of the order of 10^9 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by subpetawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHMdivergence angle of ~70 deg, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1Hand d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a methodology of using individual engineering undergraduate student projects as a means of effectively and efficiently developing new Design-Build-Test (DBT) learning experiences and challenges.
A key aspect of the rationale for this approach is that it benefits all parties. The student undertaking the individual project gets an authentic experience of producing a functional artefact, which has been the result of a design process that addresses conception, design, implementation and operation. The supervising faculty member benefits from live prototyping of new curriculum content and resources with a student who is at a similar level of knowledge and experience as the intended end users of the DBT outputs. The multiple students who ultimately undertake the DBT experiences / challenges benefit from the enhanced nature of a learning experience which has been “road tested” and optimised.
To demonstrate the methodology the paper will describe a case study example of an individual project completed in 2015. This resulted in a DBT design challenge with a theme of designing a catapult for throwing table tennis balls, the device being made from components laser cut from medium density fibreboard (MDF). Further three different modes of operation will be described which use the same resource materials but operate over different timescales and with different learning outcomes, from an icebreaker exercise focused on developing team dynamics through to full DBT where students get an opportunity to experience the full impact of their design decisions by competing against other students with a catapult they have designed and built themselves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light transmission through a single subwavelength aperture in a silver film is examined with a novel input configuration comprising an annular laser beam of variable diameter that is prism-coupled to the back face of the silver. Transmission peaks driven by excitation of the back-face surface plasmon mode or by the aperture resonance itself are separately observed. For both cases, comparison of films with and without a front-face, circular grating implies significantly more efficient coupling from the aperture fields to the front-face surface plasmon than directly to free radiation. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We call the method the R-matrix with time-dependence (RMT) method. Our starting point is a finite-difference numerical integrator (HELIUM), which has proved successful at describing few-electron atoms and atomic ions in strong laser fields with high accuracy. By exploiting the R-matrix division-of-space concept, we bring together a numerical method most appropriate to the multi-electron finite inner region (R-matrix basis set) and a different numerical method most appropriate to the one-electron outer region (finite difference). In order to exploit massively parallel supercomputers efficiently, we time-propagate the wavefunction in both regions by employing Arnoldi methods, originally developed for HELIUM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The characteristics of an extreme-ultraviolet (XUV) continuum light source and its application to a dual-laser plasma (DLP) photoabsorption experiment are described. The continuum emitting plasma was formed by focusing a 7 ps, 248 nm, 15 mJ laser pulse onto a number of selected targets known to be good XUV continuum emitters (Sm, W, Au and Pb), while the second absorbing plasma was produced by a 15 ns, 1064 nm, 300 mi pulse. The duration of the continuum emission for these plasmas has a mean value of similar to 150 ps, but depends on both the target material and the picosecond laser pulse energy. Using this picosecond DLP set-up we have been able to measure the photoabsorption spectrum of an actinide ion (thorium) for the first time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The process of second harmonic generation (SHG) in undercritical plasmas is studied. It is shown that filamentation and self-focusing of the laser beam in the plasma can break the plasma density symmetry and lead to SHG by free electrons. In turn, second harmonic emission may be used to investigate the plasma parameters and to diagnose the process of laser beam filamentation itself.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as 15% at 35 MeV. These results and high resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500 fs, ¼ 1054 nm). The conversion ef?ciency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temporal evolution of plasma jets from micrometre-scale thick foils following the interaction of intense (3 × 10 W cm ) laser pulses is studied systematically by time resolved optical interferometry. The fluid velocity in the plasma jets is determined by comparing the data with 2D hydrodynamic simulation, which agrees with the expected hole-boring (HB) velocity due to the laser radiation pressure. The homogeneity of the plasma density across the jets has been found to be improved substantially when irradiating the laser at circular polarization compared to linear polarization. While overdense plasma jets were formed efficiently for micrometre thick targets, decreasing the target areal density and/or increasing the irradiance on the target have provided indication of transition from the 'HB' to the 'light sail (LS)' regime of RPA, characterized by the appearance of narrow-band spectral features at several MeV/nucleon in proton and carbon spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the emission of Kalpha radiation from Ti foils irradiated with ultrashort (45 fs) laser pulses. We utilized the fundamental (800 nm) light from a Ti:sapphire laser on bare foils and foils coated with a thin layer of parylene E (CH). The focusing was varied widely to give a range of intensities from approximately 10(15)-10(19) W cm(-2). Our results show a conversion efficiency of laser to Kalpha energy of similar to 10(-4) at tight focus for both types of targets. In addition, the coated targets exhibited strong secondary peaks of conversion at large defocus, which we believe are due to modification of the extent of preformed plasma due to the dielectric nature of the plastic layer. This in turn affects the level of resonance absorption. A simple model of Kalpha production predicts a much higher conversion than seen experimentally and possible reasons for this are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of short-pulse tunable soft x-ray free electron laser sources based on the self-amplified spontaneous emission process will provide a major advance in capability for dense plasma-related and warm dense matter (WDM) research. The sources will provide 10(13) photons in a 200-fs duration pulse that is tunable from approximately 6 to 100 nm. Here we discuss only two of the many applications made possible for WDM that has been severely hampered by the fact that laser-based methods have been unavailable because visible light will not propagate at electron densities of n(e) greater than or equal to 10(22) cm(-3). The next-generation light sources will remove these restrictions.