11 resultados para lactam
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. 'Molecular switches' were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced hyperlocomotion in rats after ip dosing, a preclinical model that shows similar positive effects with known antipsychotic agents. Published by Elsevier Ltd.
Resumo:
BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (ß-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Piclavines AI and A2 have been synthesised for the first time. The route is short with the key step being the reaction of a bicyclic N-acyl iminium ion with 3-trimethysilyl-1-decene. This convergent strategy gave exclusively compounds in which the pendant decenyl group was axial, as a 6:1 mixture of E:Z-alkene diastereoisomers. Reduction of the lactam carbonyl group gave a 6:1 mixture of piclavines Al and A2, (C) 2000 Published by Elsevier Science Ltd.
Resumo:
Crombie, Leslie; Haigh, David; Jones, Raymond C. F.; Mat-Zin, A.Rasid. Dep. Chem., Univ. Nottingham, Nottingham, UK. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) (1993), (17), 2047-54. CODEN: JCPRB4 ISSN: 0300-922X. Journal written in English. CAN 120:164608 AN 1994:164608 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract The alkaloid homaline I was prepd. in (?) and natural (S,S)-(-) forms. Linking of 2-azacyclooctanone units either directly or successively using 1,4-dihalogenobutanes or 1,4-dihalogenobut-2-ynes is examd. (?)-5-Methyl-4-phenyl-1,5-diazacyclooctan-2-one is first made by a 2,2'-dithiodipyridine/triphenylphosphine-mediated cyclization, and then by amination and transamidative ring expansion from N-(3-chloropropyl)-4-phenylazetidin-2-one in liq. ammonia, followed by N-methylation. Coupling through a 1,4-dihalogenobutane of either the N-methylated azalactam, or the unmethylated azalactam followed by methylation, gave homaline in (?) and meso forms. (R)-(-)-phenylglycine was converted via (S)-?-phenyl-?-alanine into an (S)-?-lactam which was then alkylated with 1-bromo-3-chloropropane, and aminated and ring expanded in liq. ammonia. Coupling of the homochiral azalactam (2 mol) so formed with 1,4-dibromobutane, followed by N-methylation, gave (S,S)-(-)-homaline identical with the natural material.
Resumo:
Synthesis of the unsym. Homalium alkaloids hopromine (I, R = H, R1 = pentyl), hoprominol (I, R = OH, R1 = pentyl) and hopramalinol (I, R = OH, R1 = Ph), in diastereoisomeric mixt. form, is reported. The component eight-membered azalactams are first prepd. N-(3-halogenopropyl)-4-pentyl- and 4-heptylazetidin-2-ones are aminated and ring expanded in liq. ammonia to give, after reductive methylation, the corresponding 4-alkyl-5-methyl-1,5-diazacyclooctan-2-ones. Synthesis of the 4-(2-hydroxyheptyl)-5-methyl-1,5-diazacyclooctan-2-one required for hoprominol and hopromalinol is carried out via 4-allyl ?-lactam ring expansion to the eight-membered 4-allylazalactam, followed by methylation, epoxidn. and epoxide opening with lithium dibutylcuprate. A similar epoxidn.-cuprate sequence was carried out on the epoxypropyl ?-lactam, as its N-tert-butyldimethylsilyl deriv., and led to a convenient copper-catalyzed N- to O-migration of the protection; this migration is examd. Alkylation gave O-tert-butyldimethylsilyl-protected N-(3-chloropropyl)-4-(2-hydroxyheptyl)azetidin-2-one which could be aminated and transamidated in excellent yield, to give, after methylation, a superior sequence to the required eight-membered hydroxy azalactam. Although satisfactory for attachment of the first azalactam unit, a dibromobutane coupling system proved unreactive for the second. Couplings with unmethylated, methylated, and benzyloxycabronyl-protected azalactams were examd. using (E)-1,4-dibromobutene and (Z)-1,4-dichlorobutene as the bridging unit. Employing the latter, coupling the first N-methylated azalactam with potassium bis(trimethylsilyl)amide as the base, and then the second with bis(trimethylsilyl)amide-sodium hydride as the base system, provided a satisfactory synthetic outcome. Hydrogenation under acidic conditions gave the unsym. structures hopromine, hoprominol and hopromalinol, as well as the more simple and sym. alkaloid, homaline.
Resumo:
N-(3-Halogenopropyl)-4-phenylazetidin-2-ones undergo amination in liquid ammonia followed by transamidative ring expansion to give the eight-membered 4-phenyl -1,5-diazacyclooctan-2-one in excellent yield. Ring expansion of the amines in liquid ammonia is found to be much more effective than in hydrocarbon solvents. Formation of 7-, 8-, and 9-membered azalactams from the requisite -halogenoalkyl--lactams is an excellent synthetic process, though it is not applicable to 10membered rings. In the cases of rings of 13-, 15- and 17-members, although amination and apparent expansion takes place, the large rings appear not to be stable to ammonia and the final products are acyclic amides. N-[4-Halogenobut-2(Z)-enyl]-4-phenylazetidin-2-one satisfactorily forms a 9-membered (Z)-olefinic azalactam, but the (E)-isomer gives an acyclic amino amide. By using alkyl-substituted -lactam side-chains, C-substituted medium rings can be obtained; the relative instability of N-acyl -lactams to ammonia, however, leads to acylamino amides rather than expanded rings.Employing ethylamine in place of ammonia, it is shown that N-ethylated azalactams are formed satisfactorily, and using allylamine, N-allyl medium rings capable of further elaboration are obtained. The chemistry of these systems is discussed. Using transamidation in liquid ammonia, a short synthesis of the 9-membered spermidine alkaloid (±)-dihydroperiphylline is reported. Synthesis of key intermediates, whose transformation into the 13-membered alkaloids of the celabenzine group has already been effected, has been carried out.X-Ray single-crystal structure determinations for 4-phenyl-1,5-diazacyclononan-2-one, trans-4-phenyl-8-methyl-1,5-diazacyclooctan-2-one and (Z)-4-phenyl-1,5-diazacyclonon-7-en-2-one are reported, and comment is made on certain conformational features.
Resumo:
A review of medical records of 45 of 53 hospitalised patients with positive cultures for CTX-M type ESBL-producing Escherichia coli between 01 January and 31 May 2004 was conducted. The mean age of the population studied was 73.1 (+/-14.6) years and the majority (55.6%) had been under the care of the internal medicine or elderly care service. In the majority (77.8%) of instances the isolate was attributed to a clinical infection rather than colonisation and the commonest clinical specimen to yield the organism was urine, which was positive in 57.8% of patients. Acquisition of the organism was categorised as nosocomial in 68.9% of patients; in this subgroup, the median duration of inpatient stay prior to recovery of the organism was 24 (range 3-240) days. Haemodialysis-dependence was the most common of the comorbidities evaluated. The mean number of antibiotics prescribed per patient in the 30 days prior to first isolation of the organism was 1.7 (range 0-4). Furthermore, the mean number of antibiotic-days exposure per patient during this period was 13.9 (range 0-48). The most frequently received class of antibiotic was beta-lactam/beta-lactamase inhibitor combinations. Of 35 infections, 26 (74.2%) were successfully treated. Overall 12 patients with infection died (34.3%); attributable mortality was presumed in seven (20%).
Resumo:
KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1a (HIF-1a). HIF-1a is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1a. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1a in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1a levels in KNK437-treated cells. This suggested that the absence of HIF-1a in hypoxic cells was not due to the enhanced protein degradation. HIF-1a is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1a mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1a levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.
Resumo:
The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of β-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.
Resumo:
Extended-spectrum β-lactamase (ESBL) production and the prevalence of the β-lactamase-encoding gene blaTEM were determined in Prevotella isolates (n=50) cultured from the respiratory tract of adults and young people with cystic fibrosis (CF). Time-kill studies were used to investigate the concept of passive antibiotic resistance and to ascertain whether a β-lactamase-positive Prevotella isolate can protect a recognised CF pathogen from the action of ceftazidime in vitro. The results indicated that approximately three-quarters (38/50; 76%) of Prevotella isolates produced ESBLs. Isolates positive for ESBL production had higher minimum inhibitory concentrations (MICs) of β-lactam antibiotics compared with isolates negative for production of ESBLs (P<0.001). The blaTEM gene was detected more frequently in CF Prevotella isolates from paediatric patients compared with isolates from adults (P=0.002), with sequence analysis demonstrating that 21/22 (95%) partial blaTEM genes detected were identical to blaTEM-116. Furthermore, a β-lactamase-positive Prevotella isolate protected Pseudomonas aeruginosa from the antimicrobial effects of ceftazidime (P=0.03). Prevotella isolated from the CF respiratory microbiota produce ESBLs and may influence the pathogenesis of chronic lung infection via indirect methods, including shielding recognised pathogens from the action of ceftazidime.