19 resultados para keying
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
This letter investigates performance enhancement by the concept of multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems. For the performance evaluation, a tight closed-form approximation of the bit error rate (BER) is derived introducing the expression for the number of bit errors occurring in both the index domain and the complex domain, in the presence of both imperfect and perfect detection of active multi-carrier indices. The accuracy of the derived BER results for various cases are validated using simulations, which can provide accuracy within 1 dB at favorable channels.
Resumo:
In this paper, we propose a sparse multi-carrier index keying (MCIK) method for orthogonal frequency division multiplexing (OFDM) system, which uses the indices of sparse sub-carriers to transmit the data, and improve the performance
of signal detection in highly correlated sub-carriers. Although a receiver is able to exploit a power gain with precoding in OFDM, the sensitivity of the signal detection is usually high as the orthogonality is not retained in highly dispersive
environments. To overcome this, we focus on developing the trade-off between the sparsity of the MCIK, correlation, and performances, analyzing the average probability of the error propagation imposed by incorrect index detection over highly correlated sub-carriers. In asymptotic cases, we are able to see how sparsity of MCIK should be designed in order to perform superior to the classical OFDM system. Based on this feature, sparse MCIK based OFDM is a better choice for low detection errors in highly correlated sub-carriers.
Resumo:
Multicarrier Index Keying (MCIK) is a recently developed technique that modulates subcarriers but also indices of the subcarriers. In this paper a novel low-complexity detection scheme of subcarrier indices is proposed for an MCIK system and addresses a substantial reduction in complexity over the optimalmaximum likelihood (ML) detection. For the performance evaluation, a closed-form expression for the pairwise error probability (PEP) of an active subcarrier index, and a tight approximation of the average PEP of multiple subcarrier indices are derived in closed-form. The theoretical outcomes are validated usingsimulations, at a difference of less than 0.1dB. Compared to the optimal ML, the proposed detection achieves a substantial reduction in complexity with small loss in error performance (<= 0.6dB).
Resumo:
We propose a new selective multi-carrier index keying in orthogonal frequency division multiplexing (OFDM) systems that opportunistically modulate both a small subset of sub-carriers and their indices. Particularly, we investigate the performance enhancement in two cases of error propagation sensitive and compromised deviceto-device (D2D) communications. For the performance evaluation, we focus on analyzing the error propagation probability (EPP) introducing the exact and upper bound expressions on the detection error probability, in the presence of both imperfect and perfect detection of active multi-carrier indices. The average EPP results in closedform are generalized for various fading distribution using the moment generating function, and our numerical results clearly show that the proposed approach is desirable for reliable and energy-efficient D2D applications.
Resumo:
This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.
Resumo:
A pin diode-loaded active doubly periodic flat strip FSS is shown to act as a dynamic screen. It is shown that by means of d.c. bias control, we can utilize the screen in, (1) transmission mode as a dual band electromagnetic shutter, or with the inclusion of a ground plane in reflection mode, (is (2) it dual band refection canceller. (3) an amplitude shift keying (ASK) spatial modulator. The properties of the FSS are characterized using a specially designed parallel plate waveguide simulator that permits normal incidence excitation of the FSS under test. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51: 2059-2061, 2009; Published online in Wiley Inter-Science (www. interscience.wiley.com). DOI 10.1002/mop.24547
Resumo:
A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.
Resumo:
A simple linear precoding technique is proposed for multiple input multiple output (MIMO) broadcast systems using phase shift keying (PSK) modulation. The proposed technique is based on the fact that, on an instantaneous basis, the interference between spatial links in a MIMO system can be constructive and can contribute to the power of the useful signal to improve the performance of signal detection. In MIMO downlinks this co-channel interference (CCI) can be predicted and characterised prior to transmission. Contrary to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to influence the interference and benefit from it, thus gaining advantage from energy already existing in the communication system that is left unexploited otherwise. The proposed precoding aims at adaptively rotating, rather than zeroing, the correlation between the MIMO substreams depending on the transmitted data, so that the signal of interfering transmissions is aligned to the signal of interest at each receive antenna. By doing so, the CCI is always kept constructive and the received signal to interference-plus-noise ratio (SINR) delivered to the mobile units (MUs) is enhanced without the need to invest additional signal power per transmitted symbol at the MIMO base station (BS). It is shown by means of theoretical analysis and simulations that the proposed MIMO precoding technique offers significant performance and throughput gains compared to its conventional counterparts.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Resumo:
This paper proposes a hybrid transmission technique based on adaptive code-to-user allocation and linear precoding for the downlink of phase shift keying (PSK) based multi-carrier code division multiple access (MC-CDMA) systems. The proposed scheme is based on the separation of the instantaneous multiple access interference (MAI) into constructive and destructive components taking into account the dependency on both the channel variation and the instantaneous symbol values of the active users. The first stage of the proposed technique is to adaptively distribute the available spreading sequences to the users on a symbol-by-symbol basis in the form of codehopping with the objective to steer the users' instantaneous crosscorrelations to yield a favourable constructive to destructive MAI ratio. The second stage is to employ a partial transmitter based zero forcing (ZF) scheme specifically designed for the exploitation of constructive MAI. The partial ZF processing decorrelates destructive interferers, while users that interfere constructively remain correlated. This results in a signal to interference-plus-noise ratio (SINR) enhancement without the need for additional power-per-user investment. It will be shown in the results section that significant bit error rate (BER) performance benefits can be achieved with this technique.
Resumo:
We propose the inverse Gaussian distribution, as a less complex alternative to the classical log-normal model, to describe turbulence-induced fading in free-space optical (FSO) systems operating in weak turbulence conditions and/or in the presence of aperture averaging effects. By conducting goodness of fit tests, we define the range of values of the scintillation index for various multiple-input multiple-output (MIMO) FSO configurations, where the two distributions approximate each other with a certain significance level. Furthermore, the bit error rate performance of two typical MIMO FSO systems is investigated over the new turbulence model; an intensity-modulation/direct detection MIMO FSO system with Q-ary pulse position modulation that employs repetition coding at the transmitter and equal gain combining at the receiver, and a heterodyne MIMO FSO system with differential phase-shift keying and maximal ratio combining at the receiver. Finally, numerical results are presented that validate the theoretical analysis and provide useful insights into the implications of the model parameters on the overall system performance. © 2011 IEEE.
Resumo:
In this paper, we propose a sparse signal modulation (SSM) method for precoded orthogonal frequency division multiplexing (OFDM) systems and study the signal detection. Although a receiver is able to exploit a path diversity gain with random precoding in OFDM, the complexity of the receiver is usually high as the orthogonality is not retained due to precoding. However, with SSM, we can derive a low-complexity detector that can provide reasonably good performances with a low sparsity ratio based on the notion of compressive sensing (CS). An important feature of a CS detector is that it can estimate SSM signals with a small fraction of the received signals over sub-carriers. This feature can allow us to build a low cost receiver with a small number of demodulators.
Resumo:
This report summarizes our results from security analysis covering all 57 competitions for authenticated encryption: security, applicability, and robustness (CAESAR) first-round candidates and over 210 implementations. We have manually identified security issues with three candidates, two of which are more serious, and these ciphers have been withdrawn from the competition. We have developed a testing framework, BRUTUS, to facilitate automatic detection of simple security lapses and susceptible statistical structures across all ciphers. From this testing, we have security usage notes on four submissions and statistical notes on a further four. We highlight that some of the CAESAR algorithms pose an elevated risk if employed in real-life protocols due to a class of adaptive-chosen-plaintext attacks. Although authenticated encryption with associated data are often defined (and are best used) as discrete primitives that authenticate and transmit only complete messages, in practice, these algorithms are easily implemented in a fashion that outputs observable ciphertext data when the algorithm has not received all of the (attacker-controlled) plaintext. For an implementor, this strategy appears to offer seemingly harmless and compliant storage and latency advantages. If the algorithm uses the same state for secret keying information, encryption, and integrity protection, and the internal mixing permutation is not cryptographically strong, an attacker can exploit the ciphertext–plaintext feedback loop to reveal secret state information or even keying material. We conclude that the main advantages of exhaustive, automated cryptanalysis are that it acts as a very necessary sanity check for implementations and gives the cryptanalyst insights that can be used to focus more specific attack methods on given candidates.
Resumo:
This letter analyzes the performance of a low complexity detection scheme for a multi-carrier index keying (MCIK) with orthogonal frequency division multiplexing (OFDM) system over two-wave with diffused power (TWDP) fading channels. A closed-form expression for the average pairwise error probability (PEP) over TWDP fading channels is derived. This expression is used to analyze the performance of MCIK-OFDM in moderate, severe and extreme fading conditions. The presented results provide an insight on the performance of MCIK-OFDM for wireless communication systems that operate in enclosed metallic structures such as in-vehicular device-to-device (D2D) wireless networks.