5 resultados para inverse exponential distribution
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We propose the inverse Gaussian distribution, as a less complex alternative to the classical log-normal model, to describe turbulence-induced fading in free-space optical (FSO) systems operating in weak turbulence conditions and/or in the presence of aperture averaging effects. By conducting goodness of fit tests, we define the range of values of the scintillation index for various multiple-input multiple-output (MIMO) FSO configurations, where the two distributions approximate each other with a certain significance level. Furthermore, the bit error rate performance of two typical MIMO FSO systems is investigated over the new turbulence model; an intensity-modulation/direct detection MIMO FSO system with Q-ary pulse position modulation that employs repetition coding at the transmitter and equal gain combining at the receiver, and a heterodyne MIMO FSO system with differential phase-shift keying and maximal ratio combining at the receiver. Finally, numerical results are presented that validate the theoretical analysis and provide useful insights into the implications of the model parameters on the overall system performance. © 2011 IEEE.
Resumo:
Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ − µ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution has a simple relationship with the gamma distribution, but most importantly, its semi heavy-tailed characteristics constitute it suitable for applications relating to modeling of shadowed fading. Furthermore, the derived probability density function of the κ − µ / inverse gamma composite distribution admits a rather simple algebraic representation that renders it convenient to handle both analytically and numerically. The validity and utility of this fading model are demonstrated by means of modeling the fading effects encountered in body centric communications channels, which have been known to be susceptible to the shadowing effect. To this end, extensive comparisons are provided between theoretical and respective real-time measurement results. It is shown that these comparisons exhibit accurate fitting of the new model for various measurement set ups that correspond to realistic communication scenarios.
Resumo:
In this paper we propose a new composite fadingmodel which assumes that the mean signal power of an η−µ signalenvelope follows an inverse gamma distribution. The inversegamma distribution has a simple relationship with the gammadistribution and can be used to model shadowed fading due to itssemi heavy-tailed characteristics. To demonstrate the utility of thenew η−µ / inverse gamma composite fading model, we investigatethe characteristics of the shadowed fading behavior observed inbody centric communications channels which are known to besusceptible to shadowing effects, particularly generated by thehuman body. It is shown that the η−µ / inverse gamma compositefading model provided an excellent fit to the measurement data.Moreover, using Kullback-Leibler divergence, the η −µ / inversegamma composite fading model was found to provide a better fitto the measured data than the κ − µ / inverse gamma compositefading model, for the communication scenarios considered here.
Resumo:
Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, r jack 2= 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.
Resumo:
The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided a unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al3+, Ca2+, NO3−, and SO42− over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ∼6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration of U and other pH sensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater.