87 resultados para interference of matter-wave

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine matter-wave interferometry and cavity optomechanics to propose a coherent matter-light interface based on mechanical motion at the quantum level. We demonstrate a mechanism that is able to transfer non-classical features imprinted on the state of a matter-wave system to an optomechanical device, transducing them into distinctive interference fringes. This provides a reliable tool for the inference of quantum coherence in the particle beam. Moreover, we discuss how our system allows for intriguing perspectives, paving the way to the construction of a device for the encoding of quantum information in matter-wave systems. Our proposal, which highlights previously unforeseen possibilities for the synergistic exploitation of these two experimental platforms, is explicitly based on existing technology, available and widely used in current cutting-edge experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the DC power requirements of PIN diodes which, with suitable applied DC bias, have the potential to reflect or to permit transmission of millimetre wave energy through them by the process of inducing a semiconductor plasma layer in the i-region. The study is conducted using device level simulation of SOI and bulk PIN diodes and reflection modelling based on the Drude conduction model. We examined five diode lengths (60–140 µm) and seven diode thicknesses (4–100 µm). Simulation output for the diodes of varying thicknesses was subsequently used in reflection modelling to assess their performance for 100 GHz operation. It is shown that substantially high DC input power is required in order to induce near total reflection in SOI PIN diodes at 100 GHz. Thinner devices consume less DC power, but reflect less incident radiation for given input power. SOI diodes are shown to have improved carrier confinement compared with bulk diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse a proposal that we have recently put forward for an interface between matter-wave and optomechanical technologies from the perspective of macroscopic quantumness. In particular, by making use of a measure of macroscopicity in quantum superpositions that is particularly well suited for continuous variables systems, we demonstrate the existence of working points for our interface at which a quantum mechanical superposition of genuinely mesoscopic states is achieved. Our proposal thus holds the potential to affirm itself as a viable atom-to-mechanics transducer of quantum coherences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high-impedance surfaces (HISs) to increase the frequency-scanning sensitivity of hollow leaky-wave antennas (LWAs) is presented. The LWA consists of a hollow rectangular waveguide with one of its narrow walls replaced by a partially reflective surface, and it is loaded with a metallodielectric HIS to increase its beam-scanning response. Theoretical results based on a simple transverse equivalent network illustrate the physical mechanism responsible for the improvement, and they are verified by experiments on a prototype working in the 11-16 GHz band.