24 resultados para information fusion
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
When multiple sources provide information about the same unknown quantity, their fusion into a synthetic interpretable message is often a tedious problem, especially when sources are conicting. In this paper, we propose to use possibility theory and the notion of maximal coherent subsets, often used in logic-based representations, to build a fuzzy belief structure that will be instrumental both for extracting useful information about various features of the information conveyed by the sources and for compressing this information into a unique possibility distribution. Extensions and properties of the basic fusion rule are also studied.
Resumo:
Correctly modelling and reasoning with uncertain information from heterogeneous sources in large-scale systems is critical when the reliability is unknown and we still want to derive adequate conclusions. To this end, context-dependent merging strategies have been proposed in the literature. In this paper we investigate how one such context-dependent merging strategy (originally defined for possibility theory), called largely partially maximal consistent subsets (LPMCS), can be adapted to Dempster-Shafer (DS) theory. We identify those measures for the degree of uncertainty and internal conflict that are available in DS theory and show how they can be used for guiding LPMCS merging. A simplified real-world power distribution scenario illustrates our framework. We also briefly discuss how our approach can be incorporated into a multi-agent programming language, thus leading to better plan selection and decision making.
Resumo:
Depending on the representation setting, different combination rules have been proposed for fusing information from distinct sources. Moreover in each setting, different sets of axioms that combination rules should satisfy have been advocated, thus justifying the existence of alternative rules (usually motivated by situations where the behavior of other rules was found unsatisfactory). These sets of axioms are usually purely considered in their own settings, without in-depth analysis of common properties essential for all the settings. This paper introduces core properties that, once properly instantiated, are meaningful in different representation settings ranging from logic to imprecise probabilities. The following representation settings are especially considered: classical set representation, possibility theory, and evidence theory, the latter encompassing the two other ones as special cases. This unified discussion of combination rules across different settings is expected to provide a fresh look on some old but basic issues in information fusion.
Resumo:
We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings.
Resumo:
In previous papers, we have presented a logic-based framework based on fusion rules for merging structured news reports. Structured news reports are XML documents, where the textentries are restricted to individual words or simple phrases, such as names and domain-specific terminology, and numbers and units. We assume structured news reports do not require natural language processing. Fusion rules are a form of scripting language that define how structured news reports should be merged. The antecedent of a fusion rule is a call to investigate the information in the structured news reports and the background knowledge, and the consequent of a fusion rule is a formula specifying an action to be undertaken to form a merged report. It is expected that a set of fusion rules is defined for any given application. In this paper we extend the approach to handling probability values, degrees of beliefs, or necessity measures associated with textentries in the news reports. We present the formal definition for each of these types of uncertainty and explain how they can be handled using fusion rules. We also discuss the methods of detecting inconsistencies among sources.
Resumo:
The study of alternative combination rules in DS theory when evidence is in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. These studies have mainly focused on investigating which alternative would be appropriate for which conflicting situation, under the assumption that a conflict is identified. The issue of detection (or identification) of conflict among evidence has been ignored. In this paper, we formally define when two basic belief assignments are in conflict. This definition deploys quantitative measures of both the mass of the combined belief assigned to the emptyset before normalization and the distance between betting commitments of beliefs.We argue that only when both measures are high, it is safe to say the evidence is in conflict. This definition can be served as a prerequisite for selecting appropriate combination rules.
Resumo:
This paper describes a data model for content representation of temporal media in an IP based sensor network. The model is formed by introducing the idea of semantic-role from linguistics into the underlying concepts of formal event representation with the aim of developing a common event model. The architecture of a prototype system for a multi camera surveillance system, based on the proposed model is described. The important aspects of the proposed model are its expressiveness, its ability to model content of temporal media, and its suitability for use with a natural language interface. It also provides a platform for temporal information fusion, as well as organizing sensor annotations by help of ontologies.
Resumo:
Decision making is an important element throughout the life-cycle of large-scale projects. Decisions are critical as they have a direct impact upon the success/outcome of a project and are affected by many factors including the certainty and precision of information. In this paper we present an evidential reasoning framework which applies Dempster-Shafer Theory and its variant Dezert-Smarandache Theory to aid decision makers in making decisions where the knowledge available may be imprecise, conflicting and uncertain. This conceptual framework is novel as natural language based information extraction techniques are utilized in the extraction and estimation of beliefs from diverse textual information sources, rather than assuming these estimations as already given. Furthermore we describe an algorithm to define a set of maximal consistent subsets before fusion occurs in the reasoning framework. This is important as inconsistencies between subsets may produce results which are incorrect/adverse in the decision making process. The proposed framework can be applied to problems involving material selection and a Use Case based in the Engineering domain is presented to illustrate the approach. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.
Resumo:
In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal.