174 resultados para in situ XANES hydrogen permeation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous methods are available to measure the permeation properties of concrete, which can be classified in terms of the diffusion, absorption and permeability properties. The results from these tests are generally used to infer 'quality' or relative durability. Some of these tests involve the laboratory assessment of a sample of concrete extracted from the structure. However, this Technical Note concentrates on the alternative methods appropriate for use on site. Guidance is given on the choice of an appropriate test method, which in most practical situations depends on the predominant mechanism acting on the concrete under consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper descirbes a simple test measuring the sorptivity (a measure of the absorption property if concrete) and the air and water permeability of concrete on site. Using this test, the decay of pressure is monitired for the air permeability test.whereas water penetrating into the concrete at a constant pressure of 0.01 bar and 1.5 bar are recorded for the sorptivity and the water permeability tests respectively. These tests are essentially non-destructive in nature and a skilled operator is not needed. It is possible to carry out a number of tests quickly and efficiently on site without prior planning. It has been found that statistically satisfactory results can be obtained from a mean of three tests. As the flow lines are largely concentrated within 40 mm from the surface, reasonably reliable results can be obtained by drying the surface even if the surface under test is initially wet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The change in the Pt electronic structure following the adsorption of an a,ß-unsaturated aldehyde and ketone was followed by in situ HERFD-XANES in the liquid phase. The resulting shift in the Pt Fermi energy is in good agreement with the molecule adsorption energy trends calculated by DFT and provides insight into the reaction selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mechanistic study of the H-2-assisted Selective Catalytic Reduction (SCR) of NOx with octane as reductant over a Ag/Al2O3 catalyst was carried out using a modified DRIFTS cell coupled to a mass spectrometer Using fast transient cycling switching of H-2 with a time resolution of a few seconds It was possible to differentiate potential reaction intermediates from other moieties that are clearly spectator species Using such a periodic operation mode effects were uncovered that are normally hidden in conventional transient studies which typically consist of a single transient In experiments based on a single transient addition of H-2 to or removal of H-2 from the SCR feed it was found that the changes in the concentrations of gaseous species (products and reactants) were not matched by changes at comparable timescales of the concentration of surface species observed by IR This observation indicates that the majority of sur face species observed by DRIFTS under steady-state reaction conditions are spectators In contrast under fast cycling experimental conditions It was found that a surface isocyanate species had a temporal response that matched that of N-15(2) This suggests that some of the isocyanate species observed by infrared spectroscopy could be important intermediates in the hydrogen-assisted SCR reaction although it is emphasised that this may be dependent on the way in which the infrared spectra are obtained It is concluded that the use of fast transient cycling switching techniques may provide useful mechanistic information under certain circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With greater emphasis now being placed on the durability of concrete and the need for on-site characterization of concrete for durability, there is an increasing dependence on the measurement of the permeation properties of concrete. Such properties can be measured in the laboratory under controlled ambient conditions, namely, temperature and relative humidity, and comparisons made between samples not affected by testing conditions. An important factor that influences permeation measurements is the moisture state of the concrete prior to testing. Moisture gradients are known to exist in exposed concretes; therefore, all laboratory tests are generally carried out after preconditioning to a reference moisture state. This is reasonably easy to achieve in the laboratory, but more difficult to carry out on-site. Different methods of surface preconditioning in situ concrete are available; however, there is no general agreement on the suitability of any one method. Therefore, a comprehensive set of experiments was carried out with four different preconditioning methods. Results from these investigations indicated that only superficial drying could be achieved by using any of the preconditioning methods investigated and that significant moisture movement below a depth of 15 mm was not evident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense ceramics with mixed protonic-electronic conductivity are of considerable interest for the separation and purification of hydrogen and as electrochemical reactors. In this work, the hydrogen permeability of a Sr0.97Ce0.9Yb0.1O3 - δ (SCYb) membrane with a porous Pt catalytic layer on the hydrogen feed-exposed side has been studied over the temperature range 500-804 °C employing Ar as the permeate sweep gas. A SiO2-B2O3-BaO-MgO-ZnO-based glass-ceramic sealant was successfully employed to seal the membrane to the dual-chamber reactor. After 14 h of exposure to 10% H2:90% N2 at 804 °C, the H2 flux reached a maximum of 33 nmol cm- 2 s- 1, over an order of magnitude higher than that obtained on membranes of similar thickness without surface modification. The permeation rate then decreased slowly and moderately on annealing at 804 °C over a further 130 h. Thereafter, the flux was both reproducible and stable on thermal cycling in the range 600-804 °C. The results indicate an important role of superficial activation processes in the flux rate and suggest that hydrogen fluxes can be further optimised in cerate-based perovskites. © 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dual chamber membrane reactor was used in order to study the effect of macroscopically applied oxygen chemical potential differences to a platinum catalyst supported on a mixed oxygen ion and electronic conducting membrane. It is believed that the oxygen chemical potential difference imposed by the use of an oxygen sweep in one of the reactor chambers causes the back-spillover of oxygen species from the support onto the catalyst surface, resulting in the modification of the catalytic activity. The use of different sweep gases, such as ethylene and hydrogen was investigated as the means to reverse the rate modification by removing the spilt over species from the catalyst surface and returning the system to its initial state. Oxygen sweep in general had a positive effect on the reaction rate with rate increases up to 20% measured. Experimental results showed that hydrogen is a more potent sweep gas than ethylene in terms of the ability to reverse rate modification. A 10% rate loss was observed when using an ethylene sweep as compared with an almost 60% rate decrease when hydrogen was used as the sweep gas. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological studies on M. parvicella have been conducted to determine the rate of growth of this organism in pure culture. The organism displayed a doubling time of 128 days despite its profuse abundance in a local Wastewater Treatment Plant (WWTW). An extensive survey has been ongoing since February 2000 into the extent of M. parvicella in the WWTW. A suite of monoclonal and polyclonal antibodies has been developed to detect and quantify M. parvicella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of sequestration-based remediation strategies will depend on detailed information, including the predominant U species present as sources before biostimulation and the products produced during and after in situ biostimulation. We used X-ray absorption spectroscopy to determine the valence state and chemical speciation of U in sediment samples collected at a variety of depths through the contaminant plume at the Field Research Center at Oak Ridge, TN, before and after approximately 400 days of in situ biostimulation, as well as in duplicate bioreduced sediments after 363 days of resting conditions. The results indicate that U(VI) in subsurface sediments was partially reduced to 10–40% U(IV) during biostimulation. After biostimulation, U was no longer bound to carbon ligands and was adsorbed to Fe/Mn minerals. Reduction of U(VI) to U(IV) continued in sediment samples stored under anaerobic condition at <4 °C for 12 months, with the fraction of U(IV) in sediments more than doubling and U concentrations in the aqueous phase decreasing from 0.5-0.74 to <0.1 µM. A shift of uranyl species from uranyl bound to phosphorus ligands to uranyl bound to carbon ligands and the formation of nanoparticulate uraninite occurred in the sediment samples during storage.