11 resultados para immunolocalization

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunolocalization and gene expression of vascular endothelial growth factor (VEGF) and its cognate tyrosine kinase receptors, Flt-1 and KDR, has been studied in ocular melanomas and retinoblastomas using in situ hybridization and immunohistochemistry. Tumour-related alterations in VEGF/VEGF-receptor expression have also been examined in separate and uninvolved iris, retina and choroid of the same eyes. Although VEGF immunoreactivity in the normal retina was virtually absent, low-level VEGF expression was evident in the ganglion cell-bodies, Müller cells and in a distinct population of amacrine cells. VEGF gene expression was absent in the iris and choroid of normal eyes. In tumour-bearing eyes, high levels of VEGF protein and gene expression were observed within the vascularized regions of the tumours, while the adjacent retina and choroid showed increased VEGF levels when compared with normals. Flt-1 and KDR gene expression and immunolocalization occurred in VEGF-expressing ganglion, Müller and amacrine cells in normal eyes. Within the intra-ocular tumours, VEGF-receptor gene expression and protein was evident in the endothelial cells and also in cells close to the vessels, while in the adjacent retina, Flt-1 and KDR levels were elevated over normal, especially in the blood vessels. Flt-1 and KDR were both observed at elevated levels in the choroid and iris blood vessels. This study suggests that VEGF, Flt-1 and KDR are expressed by neural, glial and vascular elements within normal human retina. Intra-ocular tumours demonstrate a high level of VEGF and VEGF-receptor expression; within uninvolved, spatially separate retina, choroid and iris in the same eyes, expression is also elevated, especially within the vasculature. Retinal vascular endothelia may respond to high intra-ocular levels of VEGF by increasing expression of their VEGF receptors, a phenomenon which could have relevance to neoplasm-related ocular neovascularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the immunoglobulin (Ig)E immune responses to the gastric nematode, Teladorsagia circumcincta, have demonstrated a major high molecular weight allergen (HMWTc). Cross reactive allergens of similar MW were demonstrated for Trichostrongylus colubriformis and Cooperia curticei, but not for Haemonchus contortus. Purification of HMWTc was achieved by gel-filtration chromatography, and nonreducing SDS-PAGE and Western blot analysis revealed two closely associated bands with a molecular weight of approximately 140-150?kDa. Reduction showed four IgE reactive bands of 120, 50, 45 and 30?kDa, and deglycosylation abrogated the immunoreactivity of the 120 and 30?kDa bands. Ultrastructural immunolocalization by electron microscopy revealed that the IgE reactivity was confined to the cuticular surface of the infective (L3) larvae. ELISA studies to determine the IgE anti-HMWTc responses in lambs during their first grazing season, demonstrated significantly higher IgE antibody in lambs with low accumulative faecal egg count (FEC) compared to animals with high accumulative FEC. These studies provide evidence for a protective function of IgE antibody in Teladorsagia infections in lambs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breakdown of the inner blood-retinal barrier (iBRB) occurs early in diabetes and is central to the development of sight-threatening diabetic macular edema (DME) as retinopathy progresses. In the current study, we examined how advanced glycation end products (AGEs) forming early in diabetes could modulate vasopermeability factor expression in the diabetic retina and alter inter-endothelial cell tight junction (TJ) integrity leading to iBRB dysfunction. We also investigated the potential for an AGE inhibitor to prevent this acute pathology and examined a role of the AGE-binding protein galectin-3 (Gal-3) in AGE-mediated cell retinal pathophysiology. Diabetes was induced in C57/BL6 wild-type (WT) mice and in Gal-3(-/-) transgenic mice. Blood glucose was monitored and AGE levels were quantified by ELISA and immunohistochemistry. The diabetic groups were subdivided, and one group was treated with the AGE-inhibitor pyridoxamine (PM) while separate groups of WT and Gal-3(-/-) mice were maintained as nondiabetic controls. iBRB integrity was assessed by Evans blue assay alongside visualisation of TJ protein complexes via occludin-1 immunolocalization in retinal flat mounts. Retinal expression levels of the vasopermeability factor VEGF were quantified using real-time RT-PCR and ELISA. WT diabetic mice showed significant AGE -immunoreactivity in the retinal microvasculature and also showed significant iBRB breakdown (P < .005). These diabetics had higher VEGF mRNA and protein expression in comparison to controls (P < .01). PM-treated diabetics had normal iBRB function and significantly reduced diabetes-mediated VEGF expression. Diabetic retinal vessels showed disrupted TJ integrity when compared to controls, while PM-treated diabetics demonstrated near-normal configuration. Gal-3(-/-) mice showed significantly less diabetes-mediated iBRB dysfunction, junctional disruption, and VEGF expression changes than their WT counterparts. The data suggests an AGE-mediated disruption of iBRB via upregulation of VEGF in the diabetic retina, possibly modulating disruption of TJ integrity, even after acute diabetes. Prevention of AGE formation or genetic deletion of Gal-3 can effectively prevent these acute diabetic retinopathy changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes Mellitus (DM) has been found to have subtle yet profound effects on the metabolic status of the testis, the expression of numerous spermatogenic genes and is associated with increased numbers of sperm with nuclear DNA damage. The precise mechanism causing these detrimental effects remains unknown. The presence of increased levels of the most prominent member (carboxymethyllysine - CML) of the advanced glycation end product adducts and their receptor (RAGE) in the reproductive tract of DM men has provided a new avenue for research. As there are suspicions that the antibiotic (streptozotocin - STZ) employed to induce DM is also capable of causing oxidative stress and DNA damage, we compared CML and RAGE levels in the reproductive tract and sperm nDNA status of STZ mice with the levels in the Ins(2Akita) mouse to determine which more closely mimics the situation described in the human diabetic. CML was observed in the testes, epididymes and sperm of all animals. Sperm from DM mice showed particularly strong CML immunolocalization in the acrosomal cap, the equatorial region and whenever present, cytoplasmic droplets. Although increased, the level of CML on the sperm of the STZ and Ins(2Akita) DM mice did not reach statistical significance. RAGE was present on the developing acrosome and epididymal sperm of all animals and in discrete regions of the epididymes of the DM models. Only the epididymal sperm of the Ins(2Akita) mice were found to have significantly increased (p < 0.0001) nDNA damage. The Ins(2Akita) mouse therefore appears to more accurately reflect the conditions found in the human and, as such, is a more representative model for the study of diabetes and glycation's influence on male fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100 microm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µ m, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca(++). We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.