12 resultados para ice core records
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The comparison of palaeoclimate records on their own independent timescales is central to the work of the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) network. For the North Atlantic region, an event stratigraphy has been established from the high-precision Greenland ice-core records and the integrated GICC05 chronology. This stratotype provides a palaeoclimate signal to which the timing and nature of palaeoenvironmental change recorded in marine and terrestrial archives can be compared. To facilitate this wider comparison, without assuming synchroneity of climatic change/proxy response, INTIMATE has also focussed on the development of tools to achieve this. In particular the use of time-parallel marker horizons e.g. tephra layers (volcanic ash). Coupled with the recent temporal extension of the Greenland stratotype, as part of this special issue, we present an updated INTIMATE event stratigraphy highlighting key tephra horizons used for correlation across Europe and the North Atlantic. We discuss the advantages of such an approach, and the key challenges for the further integration of terrestrial palaeoenvironmental records with those from ice cores and the marine realm.
Resumo:
Acidity peaks in Greenland ice cores have been used as critical reference horizons for synchronizing ice core records, aiding the construction of a single Greenland Ice Core Chronology (GICC05) for the Holocene. Guided by GICC05, we examined sub-sections of three Greenland cores in the search for tephra from specific eruptions that might facilitate the linkage of ice core records, the dating of prehistoric tephras and the understanding of the eruptions. Here we report the identification of 14 horizons with tephra particles, including 11 that have not previously been reported from the North Atlantic region and that have the potential to be valuable isochrons. The positions of tephras whose major element data are consistent with ash from the Katmai AD 1912 and Öraefajökull AD 1362 eruptions confirm the annually resolved ice core chronology for the last 700 years. We provide a more refined date for the so-called “AD860B” tephra, a widespread isochron found across NW Europe, and present new evidence relating to the 17th century BC Thera/Aniakchak debate that shows N. American eruptions likely contributed to the acid signals at this time. Our results emphasize the variable spatial and temporal distributions of volcanic products in Greenland ice that call for a more cautious approach in the attribution of acid signals to specific eruptive events.
Resumo:
A significant cold event, deduced from the Greenland ice cores, took place between 8200 and 8000 cal. BP. Modeling of the event suggests that higher northern latitudes would have also experienced considerable decreases in precipitation and that Ireland would have witnessed one of the greatest depressions. However, no well-dated proxy record exists from the British Isles to test the model results. Here we present independent evidence for a phase of major pine recruitment on Irish bogs at around 8150 cal. BP. Dendrochronological dating of subfossil trees from three sites reveal synchronicity in germination across the region, indicative of a regional forcing, and allows for high-precision radiocarbon based dating. The inner-rings of 40% of all samples from the north of Ireland dating to the period 8500-7500 cal. BP fall within a 25-yr window. The concurrent colonization of pine on peatland is interpreted as drier conditions in the region and provides the first substantive proxy data in support of a significant hydrological change in the north of Ireland accompanying the 8.2 ka event. The dating uncertainties associated with the Irish pine record and the Greenland Ice Core Chronology 2005 (GICC05) do not allow for any overlap between the two. Our results indicate that the discrepancy could be an artifact of dating inaccuracy, and support a similar claim by Lohne et al. (2013) for the Younger Dryas boundaries. If real, this asynchrony will most likely have affected interpretations of previous proxy alignments.
Resumo:
Just before the onset of the Younger Dryas (YD) cold event, several stomatal proxy-based pCO2 records have shown a sharp increase in atmospheric CO2 concentration (pCO2) of between ca 50 and 100 ppm, followed by a rapid decrease of similar or even larger magnitude. Here we compare one of these records, a high-resolution pCO2 record from southern Sweden, with the IntCal13 record of radiocarbon (Δ14C). The two records show broadly synchronous fluctuations at the YD onset. Specifically, the IntCal13 record documents decreasing Δ14C just before the YD onset when pCO2 peaks, consistent with a source of “old” CO2 from the deep ocean. We propose that this fluctuation occurred due to a major ocean flushing event. The cause of the flushing event remains speculative but could be related to the hypothesis of the glacial ocean as a thermobaric capacitor. We confirm that the earth system can produce such large multi-decadal timescale fluctuations in pCO2 through simulating an artificial ocean flushing event with the GENIE Earth System Model. We suggest that sharp transitions of pCO2 may have remained undetected so far in ice cores due to inter-firn gas exchange and time-averaging. The stomatal proxy record is a powerful complement to the ice core records for the study of rapid climate change.
Resumo:
The North Atlantic has played a key role in abrupt climate changes due to the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to the location and strength of deep water formation. It is crucial for modelling future climate change to understand the role of the AMOC in the rapid warming and gradual cooling cycles known as Dansgaard-Oescher (DO) events which are recorded in the Greenland ice cores. However, palaeoceanographic research into DO events has been hampered by the uncertainty in timing due largely to the lack of a precise chronological time frame for marine records. While tephrochronology provides links to the Greenland ice core records at a few points, radiocarbon remains the primary dating method for most marine cores. Due to variations in the atmospheric and oceanic 14C concentration, radiocarbon ages must be calibrated to provide calendric ages. The IntCal Working Group provides a global estimate of ocean 14C ages for calibration of marine radiocarbon dates, but the variability of the surface marine reservoir age in the North Atlantic particularly during Heinrich or DO events, makes calibration uncertain. In addition, the current Marine09 radiocarbon calibration beyond around 15 ka BP is largely based on 'tuning' to the Hulu Cave isotope record, so that the timing of events may not be entirely synchronous with the Greenland ice cores. The use of event-stratigraphy and independent chronological markers such as tephra provide the scope to improve marine radiocarbon reservoir age estimates particularly in the North Atlantic where a number of tephra horizons have been identified in both marine sediments and the Greenland ice cores. Quantification of timescale uncertainties is critical but statistical techniques which can take into account the differential dating between events can improve the precision. Such techniques should make it possible to develop specific marine calibration curves for selected regions.
Resumo:
The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Volcanic ash layers preserved within the geologic record represent precise time markers that correlate disparate depositional environments and enable the investigation of synchronous and/or asynchronous behaviors in Earth system and archaeological sciences. However, it is generally assumed that only exceptionally powerful events, such as supereruptions (≥450 km3 of ejecta as dense-rock equivalent; recurrence interval of ∼105 yr), distribute ash broadly enough to have an impact on human society, or allow us to address geologic, climatic, and cultural questions on an intercontinental scale. Here we use geochemical, age, and morphological evidence to show that the Alaskan White River Ash (eastern lobe; A.D. 833–850) correlates to the “AD860B” ash (A.D. 846–848) found in Greenland and northern Europe. These occurrences represent the distribution of an ash over 7000 km, linking marine, terrestrial, and ice-core records. Our results indicate that tephra from more moderate-size eruptions, with recurrence intervals of ∼100 yr, can have substantially greater distributions than previously thought, with direct implications for volcanic dispersal studies, correlation of widely distributed proxy records, and volcanic hazard assessment.
Resumo:
Three distal tephra layers or cryptotephras have been detected within a sedimentary sequence from the Netherlands that spans the last glacial-interglacial transition. Geochemical analyses identify one as the Vedde Ash, which represents the southernmost discovery of this mid-Younger Dryas tephra so far. This tephra was found as a distinct horizon in three different cores sampled within the basin. The remaining two tephras have not been geochemically ‘fingerprinted’, partly due to low concentrations and uneven distributions of shards within the sequences sampled. Nevertheless, there is the potential for tracing these tephra layers throughout the Netherlands and into other parts of continental Europe. Accordingly, the possibilities for precise correlation of Dutch palaeoenvironmental records with other continental, marine and ice-core records from the North Atlantic region are highlighted.
Resumo:
The sediment sequence from Hasseldala port in southeastern Sweden provides a unique Lateglacial/early Holocene record that contains five different tephra layers. Three of these have been geochemically identified as the Borrobol Tephra, the Hasseldalen Tephra and the 10-ka Askja Tephra. Twenty-eight high-resolution C-14 measurements have been obtained and three different age models based on Bayesian statistics are employed to provide age estimates for the five different tephra layers. The chrono- and pollen stratigraphic framework supports the stratigraphic position of the Borrobol Tephra as found in Sweden at the very end of the Older Dryas pollen zone and provides the first age estimates for the Askja and Hasseldalen tephras. Our results, however, highlight the limitations that arise in attempting to establish a robust, chronologically independent lacustrine sequence that can be correlated in great detail to ice core or marine records. Radiocarbon samples are prone to error and sedimentation rates in lake basins may vary considerably due to a number of factors. Any type of valid and 'realistic' age model, therefore, has to take these limitations into account and needs to include this information in its prior assumptions. As a result, the age ranges for the specific horizons at Hasseldala port are large and calendar year estimates differ according to the assumptions of the age-model. Not only do these results provide a cautionary note for overdependence on one age-model for the derivation of age estimates for specific horizons, but they also demonstrate that precise correlations to other palaeoarchives to detect leads or lags is problematic. Given the uncertainties associated with establishing age-depth models for sedimentary sequences spanning the Lateglacial period, however, this exercise employing Bayesian probability methods represents the best possible approach and provides the most statistically significant age estimates for the pollen zone boundaries and tephra horizons. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO(2). The first and largest eruption caused the inward collapse of a stratovolcano and produced the 'Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands > 40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, largescale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the 'Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km(3) of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of similar to 12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24x10(13) kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.
Resumo:
The emerging tephrostratigraphy of NW Europe spanning the last termination (ca. 15–9 ka) provides the potential for synchronizing marine, ice-core and terrestrial records, but is currently compromised by stratigraphic complications, geochemical ambiguity and imprecise age estimates for some layers. Here we present new tephrostratigraphic, radiocarbon and chironomid-based
palaeotemperature data from Abernethy Forest, Scotland, that refine the ages and stratigraphic positions of the Borrobol and Penifiler tephras. The Borrobol Tephra (14.14–13.95 cal ka BP) was deposited in a relatively warm period equated with Greenland Interstadial sub-stage GI-1e. The younger Penifiler Tephra (14.09–13.65 cal ka BP) is closely associated with a cold oscillation equated with GI-
1d. We also present evidence for a previously undescribed tephra layer that has a major-element chemical signature identical to the Vedde Ash. It is associated with the warming trend at the end of the Younger Dryas, and dates between 11.79 and 11.20 cal ka BP.
Late-Pleistocene palaeoclimate and glacial activity recorded from lake sediments in the Eastern Alps
Resumo:
Greenland ice core data show that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warming-cooling cycles. While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous and well dated records of the time period preceding the LGM are only known from stalagmites. Although most of the sediment that filled the Alpine valleys prior to the LGM was eroded, thick successions have been locally preserved as terraces along the flanks of large longitudinal valleys. The Inn valley in Tyrol (Austria) offers the most striking examples of Pleistocene terraces in the Eastern Alps. A large number of drill cores provides the opportunity to study these sediments for the first time in great detail. Our study focuses on the river terrace of Unterangerberg near Wörgl, where LGM gravel and till were deposited on top of (glacio)lacustrine sediments. The cores comprise mostly silty material, ranging from organic-rich to organic-poor and dropstone-rich beds. A diamictic layer classified as basal till is present at the bottom of the lake sediments. Radiocarbon ages of plant macro remains from the lake sequences indicate deposition between ~40 and >50 cal. ka BP. Luminescence ages obtained from fine-grain polymineral (4-11 μm) samples suggest an age of the lake deposits between ~40 to 60 ka and are consistent with the radiocarbon dates. Sedimentological analyses indicate that sedimentation in these palaeolakes was driven by local processes, but also by climatically induced changes in nearby glacier activity. These observations strongly hint towards a significant ice advance in the Eastern Alps during the early last glacial and subsequent mild interstadial conditions, supporting a local coniferous forest vegetation.