2 resultados para hypotensive effect
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Angiotensin-converting enzyme (EC3.4.15. I; ACE), isa membrane-bounddipeptidyl carboxypeptidase that mediates the cleavage of the C-terminal dipeptide His-Leu of the decapeptide angiotensin, generating the most powerful endogenous vaso-constricting angiotensin.
Some ACE inhibitors, such as Captopril, have been used as anti-hypertensive drugs. Moreover in recent years, large quantities of ACE inhibitors have been identijied and isolated from peptides derivedfrom food material such as casein, soy protein, jish protein and so on. Functional food with hypotensive effect has been developed on the basis of these works.
Typicalprocedures for screening hypotensive peptides offood origins are separationof products of peptic and tryptic digestion of proteins followed by inhibitory activitydetermination of each fraction. A method developed by Cushman has been the mostwidely used, in which ACE activity is determined by the amount of hippuric acid
generated as a product of enzymatic reaction of ACE with tripeptide of hippuryl-Lhistidyl-L-leucine. Hippuric acid is determined spectrophotometrically at 228 nm after its isolation from the reaction system by ethylacetate extraction, which not only requires alarge quantity of reagent but also results in large error.
An improved method based on Cushman ’s method is proposed in this paper. In this method, an enzymatic reaction system is based on Cushman’s method, while isolation and determination of hippuric acid is performed by medium perjormance gel chromatography on a Toyopearl HW-40s column. Due to the size exclusion nature of the column with somewhat hydrophobic properties, complete separation of four existing fractions in the reaction system is obtained within a smallfraction of the time necessary in Cushman’s method, with ideal reproducibility.
Resumo:
The short-term systemic and renal hemodynamic effects of two stroma-free hemoglobin (SFH) solutions, one unmodified and the other modified by cross-linking, were examined in anesthetized rats after hemorrhagic hypotension. Both forms of SFH increased mean arterial pressure (MAP) and glomerular filtration rate (GFR) to baseline (prehemorrhage) values. The increase in MAP induced by unmodified SFH was greater than the increase in MAP caused by an albumin solution isoncotic to the unmodified SFH solution. Similarly, the increase in MAP caused by the modified SFH was also substantially greater than that induced by an albumin solution of comparable oncotic pressure to the modified SFH solution. Both unmodified and modified SFH increased GFR. As with MAP, the increase in GFR induced by both SFH solutions was greater than that associated with the oncotically matched albumin solutions. In separate experiments, the effects of nitric oxide (NO) inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) on MAP after hemorrhagic hypotension and subsequent infusion of unmodified SFH or albumin were also examined. In the albumin-infused rats, L-NAME increased MAP. In marked contrast, NO inhibition with L-NAME had no further effect on MAP when infused after SFH. We conclude that both unmodified and modified SFH solutions acutely improve MAP and GFR by the combined effects of intravascular volume expansion resulting from the colloid effect of the protein and by inactivation of NO.